Deep learning

3.1. The perceptron

Francois Fleuret

https://fleuret.org/dlc/

UNIVERSITE
DE GENEVE

https://fleuret.org/dlc/

The first mathematical model for a neuron was the Threshold Logic Unit, with
Boolean inputs and outputs:

f(x) = l{wzi xj+b>0}

Francois Fleuret Deep learning / 3.1. The perceptron 1/16

The first mathematical model for a neuron was the Threshold Logic Unit, with

Boolean inputs and outputs:

f(x) =11, 5, b0}

It can in particular implement

or(u,v) = leiiv_05>0}
and(u,v) = 1iv—15>0}

not(u) = 1{_ 1 05>0}

Francois Fleuret

(w=1,b=—05)
(w=1,b=-15)
(w=—1,b=05)

Deep learning / 3.1. The perceptron

1/16

Francois Fleuret

The first mathematical model for a neuron was the Threshold Logic Unit, with

Boolean inputs and outputs:

f(x) = l{wzi xj+b>0}

It can in particular implement
or(u,v) = 1{u+V70.520}
and(u,v) = 1iv—15>0}

not(u) = 1{_ 1 05>0}

(w=1,b=—0.5)
(w=1,b=-15)
(w=—1,b=05)

Hence, any Boolean function can be build with such units.

(McCulloch and Pitts, 1943)

Deep learning / 3.1. The perceptron

1/16

The perceptron is very similar

1 if > wix+b>0
f(x) = i
0 otherwise

but the inputs are real valued and weights can be different (Rosenblatt, 1957).

Francois Fleuret Deep learning / 3.1. The perceptron 2/16

The perceptron is very similar

1 if > wix+b>0
f(x) = i

0 otherwise

but the inputs are real valued and weights can be different (Rosenblatt, 1957).

It was originally motivated by biology, with w; being the synaptic weights, and
x; and f firing rates. However, it is a (very) crude biological model.

Francois Fleuret Deep learning / 3.1. The perceptron 2/16

To make things simpler we take responses +1. Let

o(x) =

{ 1 if x>0

1 otherwise.

-1

The perceptron classification rule boils down to

f(x) =o(w-x+ b).

Francois Fleuret Deep learning / 3.1. The perceptron

3/16

To make things simpler we take responses +1. Let

bg{ 1 if x>0
o) = —1 otherwise.

-1

The perceptron classification rule boils down to
f(x) =o(w-x+ b).

For neural networks, the function o that follows a linear operator is called the
activation function.

Francois Fleuret Deep learning / 3.1. The perceptron 3/16

We can represent this “neuron” as follows:

Value
W1]
Parameter
T
a x N Operation

H
Ea—=]

Francois Fleuret Deep learning / 3.1. The perceptron 4 /16

We can also use tensor operations, as in

f(x) =o(w-x+ b).

@
L

Francois Fleuret Deep learning / 3.1. The perceptron

5/16

Given a training set
(xn,yn) ERP x {~1,1}, n=1,...,N,

a very simple scheme to train such a linear operator for classification is the
perceptron algorithm:

Francois Fleuret Deep learning / 3.1. The perceptron 6/16

Given a training set
(xn,yn) ERP x {~1,1}, n=1,...,N,

a very simple scheme to train such a linear operator for classification is the
perceptron algorithm:

1. Start with w® =0,
2. while 3ng s.t. yn, (wk - Xn,) <0, update Wkt = wk 4y X,

Francois Fleuret Deep learning / 3.1. The perceptron 6 /16

Francois Fleuret

Given a training set
(xn,yn) ERP x {~1,1}, n=1,...,N,

a very simple scheme to train such a linear operator for classification is the
perceptron algorithm:

1. Start with w® =0,
2. while 3ng s.t. yn, (wk - Xn,) <0, update Wkt = wk 4y X,

The bias b can be introduced as one of the ws by adding a constant component
to x equal to 1.

Deep learning / 3.1. The perceptron

6/16

def train_perceptron(x, y, nb_epochs_max):
w = torch.zeros(x.size(1))

for e in range(nb_epochs_max):
nb_changes = 0
for i in range(x.size(0)):
if x[i].dot(w) * y[i] <= 0:
w=w + y[i] * x[i]
nb_changes = nb_changes + 1
if nb_changes == 0: break;

return w

Francois Fleuret Deep learning / 3.1. The perceptron 7/ 16

Francois Fleuret Deep learning / 3.1. The perceptron 8 /16

Frangois Fleuret Deep learning / 3.1. The perceptron 8 /16

Frangois Fleuret Deep learning / 3.1. The perceptron 8 /16

Frangois Fleuret Deep learning / 3.1. The perceptron 8 /16

Frangois Fleuret Deep learning / 3.1. The perceptron 8 /16

Frangois Fleuret Deep learning / 3.1. The perceptron 8 /16

Frangois Fleuret Deep learning / 3.1. The perceptron 8 /16

Frangois Fleuret Deep learning / 3.1. The perceptron 8 /16

This crude algorithm works often surprisingly well. With MNIST's “0"s as
negative class, and “1"s as positive one.

/
o
&
0

Francois Fleuret Deep learning / 3.1. The perceptron 9/16

Francois Fleuret

This crude algorithm works often surprisingly well. With MNIST's “0"s as

negative class, and “1"s as positive one.

epoch
epoch
epoch
epoch
epoch
epoch
epoch
epoch
epoch

2 nb_changes 10 train_error 0.06% test_error 0.05%

3 nb_changes
4 nb_changes
5 nb_changes
6 nb_changes
7 nb_changes
8 nb_changes

6

5
4
3
2
0

train_error
train_error
train_error
train_error
train_error
train_error

0.037%
0.037%
0.027%,
0.
0
[

01%

.00%
.00%

test_error
test_error
test_error
test_error
test_error
test_error

Deep learning / 3.1. The perceptron

0.
0.
0.
0.
0.
0.

149,
09%
149,
149,
149,
149,

9/16

Francois Fleuret

epoch
epoch
epoch
epoch
epoch
epoch
epoch
epoch
epoch

This crude algorithm works often surprisingly well. With MNIST's “0"s as
negative class, and “1"s as positive one.

2 nb_changes 10 train_error 0.06% test_error 0.05%

3 nb_changes
4 nb_changes
5 nb_changes
6 nb_changes
7 nb_changes
8 nb_changes

6

5
4
3
2
0

train_error
train_error
train_error
train_error
train_error
train_error

0.03%
0.037%
0.
[
0
[

027

.01Y%
.00%
.00%

test_error
test_error
test_error
test_error
test_error
test_error

Deep learning / 3.1.

The perceptron

0.
0.
0.
0.
0.
0.

147,
09%
147
147
147
14%

We can get a convergence result under two assumptions:

Francois Fleuret Deep learning / 3.1. The perceptron 10/ 16

We can get a convergence result under two assumptions:

1. The x, are in a sphere of radius R:

3R >0, Vn, ||x]] < R.

Francois Fleuret Deep learning / 3.1. The perceptron 10 / 16

We can get a convergence result under two assumptions:

1. The x, are in a sphere of radius R:

3R >0, Vn, ||x]] < R.

2. The two populations can be separated with a margin :

EIW*? HW*H = 17 E"‘/ > 07 vn7 Yn (Xn : W*) Z ’7/2

Francois Fleuret Deep learning / 3.1. The perceptron

10/ 16

To prove the convergence, let us make the assumption that there still is a
misclassified sample at iteration k.

We have
whthowr = <Wk +Ynank) w”
= wk.owt + Vi, (Xn, - w™)
> wkow*4+4/2
> (k+1)y/2.

Francois Fleuret Deep learning / 3.1. The perceptron 11 /16

To prove the convergence, let us make the assumption that there still is a
misclassified sample at iteration k.

We have
WLt — (Wk +ynank) cw*
= wk.owt + Vi, (Xn, - w™)
> wk . w* +v/2
> (k+1)y/2.
Since
W [lllw™]| > wh - w,
we get
K2 k 2 2
k2> (wkew) /w
> KA /4.

Francois Fleuret Deep learning / 3.1. The perceptron 11 /16

And

Hwk+1H2 — whktl .kt

(wk +ynank> : (Wk +}/nkxnk>
=wk. wh+ 2 yn, wh. Xy + ||X"k||2
—_— =

<0 <R?

IN

w1 + R
< (k+1)R2%

Francois Fleuret Deep learning / 3.1. The perceptron 12 /16

Putting these two results together, we get
K92/4 < [wh? < Kk R?

hence
k < 4R?/~2,

hence no misclassified sample can remain after L4R2/72J iterations.

Francois Fleuret Deep learning / 3.1. The perceptron 13/ 16

Putting these two results together, we get
K92/4 < [wh? < Kk R?

hence
k < 4R?/~2,

hence no misclassified sample can remain after L4R2/72J iterations.

This result makes sense:
e The bound does not change if the population is scaled, and

¢ the larger the margin, the more quickly the algorithm classifies all the
samples correctly.

Francois Fleuret Deep learning / 3.1. The perceptron 13/ 16

The perceptron stops as soon as it finds a separating boundary. Other
algorithms maximize the distance of samples to the decision boundary, which
improves robustness to noise.

Francois Fleuret Deep learning / 3.1. The perceptron 14/ 16

The perceptron stops as soon as it finds a separating boundary. Other
algorithms maximize the distance of samples to the decision boundary, which
improves robustness to noise.

Support Vector Machines (SVM) achieve this by minimizing
5 1
Z(w, b) = A|w|® + N ; max(0,1 — yp(w - xs + b)),

which is convex and has a global optimum.

Francois Fleuret Deep learning / 3.1. The perceptron 14/ 16

1
Z(w, b) = A|wl|? + N > “max(0,1 — yn(w - xq + b))

Francois Fleuret Deep learning / 3.1. The perceptron 15 / 16

1
P(w,b) = AWl + 13" max(0,1 = ya(w - xo + b))

®e
° °
2 —
Tl °
\.
\
L] .\
o ©
° °

Minimizing max(0,1 — y,(w - x, + b)) pushes the nth sample beyond the plane
w - x + b = y,, and minimizing ||w||? increases the distance between the
w-x+b==+1.

Francois Fleuret Deep learning / 3.1. The perceptron 15 / 16

1
P (w,b) = Aw|> + = 3" max(0,1 = yn(w - x0 + b))
n

° Support vectors

Minimizing max(0,1 — ys(w - x, + b)) pushes the nth sample beyond the plane
w - x + b = y,, and minimizing ||w||? increases the distance between the
w-x+b==+1.

At convergence, only a small number of samples matter, the “support vectors”.

Francois Fleuret Deep learning / 3.1. The perceptron 15 / 16

The term
max(0,1 — «)

is the so called “hinge loss”

Francois Fleuret Deep learning / 3.1. The perceptron

16 / 16

The end

References

W. S. McCulloch and W. Pitts. A logical calculus of the ideas immanent in nervous
activity. The bulletin of mathematical biophysics, 5(4):115-133, 1943.

F. Rosenblatt. The perceptron—A perceiving and recognizing automaton. Technical
Report 85-460-1, Cornell Aeronautical Laboratory, 1957.

	References

