
Deep learning

3.1. The perceptron

François Fleuret

https://fleuret.org/dlc/

https://fleuret.org/dlc/


The first mathematical model for a neuron was the Threshold Logic Unit, with
Boolean inputs and outputs:

f (x) = 1{w ∑
i xi+b≥0}.

It can in particular implement

or(u, v) = 1{u+v−0.5≥0} (w = 1, b = −0.5)

and(u, v) = 1{u+v−1.5≥0} (w = 1, b = −1.5)

not(u) = 1{−u+0.5≥0} (w = −1, b = 0.5)

Hence, any Boolean function can be build with such units.

(McCulloch and Pitts, 1943)
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The perceptron is very similar

f (x) =

 1 if
∑
i

wi xi + b ≥ 0

0 otherwise

but the inputs are real valued and weights can be different (Rosenblatt, 1957).

It was originally motivated by biology, with wi being the synaptic weights, and
xi and f firing rates. However, it is a (very) crude biological model.
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To make things simpler we take responses ±1. Let

σ(x) =

{
1 if x ≥ 0

−1 otherwise.

−1

1

The perceptron classification rule boils down to

f (x) = σ(w · x + b).

For neural networks, the function σ that follows a linear operator is called the
activation function.
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We can represent this “neuron” as follows:

Value

Parameter

Operation

x2

x1

x3

×

×

×

w1

w2

w3

Σ

b

σ y
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We can also use tensor operations, as in

f (x) = σ(w · x + b).

x ·

w

+

b

σ y
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Given a training set

(xn, yn) ∈ RD × {−1, 1}, n = 1, . . . ,N,

a very simple scheme to train such a linear operator for classification is the
perceptron algorithm:

1. Start with w0 = 0,

2. while ∃nk s.t. ynk
(
wk · xnk

)
≤ 0, update wk+1 = wk + ynk xnk .

The bias b can be introduced as one of the ws by adding a constant component
to x equal to 1.
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def train_perceptron(x, y, nb_epochs_max):
w = torch.zeros(x.size(1))

for e in range(nb_epochs_max):
nb_changes = 0
for i in range(x.size(0)):

if x[i].dot(w) * y[i] <= 0:
w = w + y[i] * x[i]
nb_changes = nb_changes + 1

if nb_changes == 0: break;

return w
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This crude algorithm works often surprisingly well. With MNIST’s “0”s as
negative class, and “1”s as positive one.

epoch 0 nb_changes 64 train_error 0.23% test_error 0.19%

epoch 1 nb_changes 24 train_error 0.07% test_error 0.00%

epoch 2 nb_changes 10 train_error 0.06% test_error 0.05%

epoch 3 nb_changes 6 train_error 0.03% test_error 0.14%

epoch 4 nb_changes 5 train_error 0.03% test_error 0.09%

epoch 5 nb_changes 4 train_error 0.02% test_error 0.14%

epoch 6 nb_changes 3 train_error 0.01% test_error 0.14%

epoch 7 nb_changes 2 train_error 0.00% test_error 0.14%

epoch 8 nb_changes 0 train_error 0.00% test_error 0.14%
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We can get a convergence result under two assumptions:

γ

w∗

R

·

1. The xn are in a sphere of radius R:

∃R > 0, ∀n, ∥xn∥ ≤ R.

2. The two populations can be separated with a margin γ:

∃w∗, ∥w∗∥ = 1, ∃γ > 0, ∀n, yn (xn · w∗) ≥ γ/2.
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To prove the convergence, let us make the assumption that there still is a
misclassified sample at iteration k.

We have

wk+1 · w∗ =
(
wk + ynk xnk

)
· w∗

= wk · w∗ + ynk (xnk · w∗)

≥ wk · w∗ + γ/2

≥ (k + 1) γ/2.

Since
∥wk∥∥w∗∥ ≥ wk · w∗,

we get

∥wk∥2 ≥
(
wk · w∗

)2
/∥w∗∥2

≥ k2γ2/4.
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And

∥wk+1∥2 = wk+1 · wk+1

=
(
wk + ynk xnk

)
·
(
wk + ynk xnk

)
= wk · wk + 2 ynk w

k · xnk︸ ︷︷ ︸
≤0

+ ∥xnk ∥
2︸ ︷︷ ︸

≤R2

≤ ∥wk∥2 + R2

≤ (k + 1)R2.
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Putting these two results together, we get

k2γ2/4 ≤ ∥wk∥2 ≤ k R2

hence
k ≤ 4R2/γ2,

hence no misclassified sample can remain after
⌊
4R2/γ2

⌋
iterations.

This result makes sense:

• The bound does not change if the population is scaled, and

• the larger the margin, the more quickly the algorithm classifies all the
samples correctly.
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The perceptron stops as soon as it finds a separating boundary. Other
algorithms maximize the distance of samples to the decision boundary, which
improves robustness to noise.

Support Vector Machines (SVM) achieve this by minimizing

ℒ (w , b) = λ∥w∥2 +
1

N

∑
n

max(0, 1− yn(w · xn + b)),

which is convex and has a global optimum.

François Fleuret Deep learning / 3.1. The perceptron 14 / 16



The perceptron stops as soon as it finds a separating boundary. Other
algorithms maximize the distance of samples to the decision boundary, which
improves robustness to noise.

Support Vector Machines (SVM) achieve this by minimizing

ℒ (w , b) = λ∥w∥2 +
1

N

∑
n

max(0, 1− yn(w · xn + b)),

which is convex and has a global optimum.

François Fleuret Deep learning / 3.1. The perceptron 14 / 16



ℒ (w , b) = λ∥w∥2 +
1

N

∑
n

max(0, 1− yn(w · xn + b))

2
∥w∥

Support vectors

Minimizing max(0, 1− yn(w · xn + b)) pushes the nth sample beyond the plane
w · x + b = yn, and minimizing ∥w∥2 increases the distance between the
w · x + b = ±1.

At convergence, only a small number of samples matter, the “support vectors”.
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The term
max(0, 1− α)

is the so called “hinge loss”
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The end
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