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Object detection and segmentation

16 Pinheiro, Lin, Collobert, Dollár

Fig. 8: More selected qualitative results (see also Figure 4).

(Pinheiro et al., 2016)
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Reinforcement learning

Self-trained, plays 49 games at human level.

(Mnih et al., 2015)
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Strategy games

March 2016, 4-1 against a 9-dan professional without handicap.

(Silver et al., 2016)
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Translation

“The reason Boeing are doing this is to cram more seats in to make their plane
more competitive with our products,” said Kevin Keniston, head of passenger
comfort at Europe’s Airbus.

➙
“La raison pour laquelle Boeing fait cela est de créer plus de sièges pour rendre
son avion plus compétitif avec nos produits”, a déclaré Kevin Keniston, chef
du confort des passagers chez Airbus.

When asked about this, an official of the American administration replied:
“The United States is not conducting electronic surveillance aimed at offices
of the World Bank and IMF in Washington.”

➙
Interrogé à ce sujet, un fonctionnaire de l’administration américaine a répondu:
“Les États-Unis n’effectuent pas de surveillance électronique à l’intention des
bureaux de la Banque mondiale et du FMI à Washington”

(Wu et al., 2016)
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Question answering

I: Jane went to the hallway.
I: Mary walked to the bathroom.
I: Sandra went to the garden.
I: Daniel went back to the garden.
I: Sandra took the milk there.
Q: Where is the milk?
A: garden

I: It started boring, but then it got interesting.
Q: What's the sentiment?
A: positive

(Kumar et al., 2015)
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Auto-captioning

Figure 5. A selection of evaluation results, grouped by human rating.

4.3.7 Analysis of Embeddings

In order to represent the previous word St−1 as input to
the decoding LSTM producing St, we use word embedding
vectors [22], which have the advantage of being indepen-
dent of the size of the dictionary (contrary to a simpler one-
hot-encoding approach). Furthermore, these word embed-
dings can be jointly trained with the rest of the model. It
is remarkable to see how the learned representations have
captured some semantic from the statistics of the language.
Table 4.3.7 shows, for a few example words, the nearest
other words found in the learned embedding space.

Note how some of the relationships learned by the model
will help the vision component. Indeed, having “horse”,
“pony”, and “donkey” close to each other will encourage the
CNN to extract features that are relevant to horse-looking
animals. We hypothesize that, in the extreme case where
we see very few examples of a class (e.g., “unicorn”), its
proximity to other word embeddings (e.g., “horse”) should
provide a lot more information that would be completely
lost with more traditional bag-of-words based approaches.

5. Conclusion

We have presented NIC, an end-to-end neural network
system that can automatically view an image and generate

Word Neighbors
car van, cab, suv, vehicule, jeep
boy toddler, gentleman, daughter, son
street road, streets, highway, freeway
horse pony, donkey, pig, goat, mule
computer computers, pc, crt, chip, compute

Table 6. Nearest neighbors of a few example words

a reasonable description in plain English. NIC is based on
a convolution neural network that encodes an image into a
compact representation, followed by a recurrent neural net-
work that generates a corresponding sentence. The model is
trained to maximize the likelihood of the sentence given the
image. Experiments on several datasets show the robust-
ness of NIC in terms of qualitative results (the generated
sentences are very reasonable) and quantitative evaluations,
using either ranking metrics or BLEU, a metric used in ma-
chine translation to evaluate the quality of generated sen-
tences. It is clear from these experiments that, as the size
of the available datasets for image description increases, so
will the performance of approaches like NIC. Furthermore,
it will be interesting to see how one can use unsupervised
data, both from images alone and text alone, to improve im-
age description approaches.

(Vinyals et al., 2015)
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Image generation

(Brock et al., 2018)
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Text generation

System Prompt (human-written)

In a shocking finding, scientist discovered a herd of unicorns living
in a remote, previously unexplored valley, in the Andes
Mountains. Even more surprising to the researchers was the fact that
the unicorns spoke perfect English.

Model Completion (machine-written, 10 tries)

The scientist named the population, after their distinctive horn,
Ovid’s Unicorn. These four-horned, silver-white unicorns were
previously unknown to science.

Now, after almost two centuries, the mystery of what sparked this odd
phenomenon is finally solved.

Dr. Jorge Pérez, an evolutionary biologist from the University of La
Paz, and several companions, were exploring the Andes Mountains when
they found a small valley, with no other animals or humans. Pérez
noticed that the valley had what appeared to be a natural fountain,
surrounded by two peaks of rock and silver snow.

(Radford et al., 2019)
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Protein folding prediction

(Jumper et al., 2021)
Plasma confinement

(Degrave et al., 2022)
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Why does it work now?
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The success of deep learning is multi-factorial:

• Five decades of research in machine learning,

• CPUs/GPUs/storage developed for other purposes,

• lots of data from “the internet”,

• tools and culture of collaborative and reproducible science,

• resources and efforts from large corporations.
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Five decades of research in ML provided

• a taxonomy of ML concepts (classification, generative models, clustering,
kernels, linear embeddings, etc.),

• a sound statistical formalization (Bayesian estimation, PAC),

• a clear picture of fundamental issues (bias/variance dilemma, VC
dimension, generalization bounds, etc.),

• a good understanding of optimization issues,

• efficient large-scale algorithms.
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From a practical perspective, deep learning

• lessens the need for a deep mathematical grasp,

• makes the design of large learning architectures a system/software
development task,

• allows to leverage modern hardware (clusters of GPUs),

• does not plateau when using more data,

• makes large trained networks a commodity.
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TFlops (1012) Price GFlops per $
Intel Core i7-6700K 0.2 $275 0.7

Intel Core i9-7980XE 0.9 $1’999 0.5

AMD Ryzen 7 PRO 4750G 1.1 $640 1.7

NVIDIA GTX 2080 Ti 14.2 $999 14.2

NVIDIA GTX 3090 35.5 $1’500 23.7

AMD Radeon RX 6900 XT 23.0 $999 23.0
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Validation loss for language models vs. training compute.

Figure 3.1: Smooth scaling of performance with compute. Performance (measured in terms of cross-entropy
validation loss) follows a power-law trend with the amount of compute used for training. The power-law behavior
observed in [KMH+20] continues for an additional two orders of magnitude with only small deviations from the
predicted curve. For this figure, we exclude embedding parameters from compute and parameter counts.

Setting PTB

SOTA (Zero-Shot) 35.8a

GPT-3 Zero-Shot 20.5

Table 3.1: Zero-shot results on PTB language modeling dataset. Many other common language modeling datasets
are omitted because they are derived from Wikipedia or other sources which are included in GPT-3’s training data.
a[RWC+19]

3.1 Language Modeling, Cloze, and Completion Tasks

In this section we test GPT-3’s performance on the traditional task of language modeling, as well as related tasks
that involve predicting a single word of interest, completing a sentence or paragraph, or choosing between possible
completions of a piece of text.

3.1.1 Language Modeling

We calculate zero-shot perplexity on the Penn Tree Bank (PTB) [MKM+94] dataset measured in [RWC+19]. We omit
the 4 Wikipedia-related tasks in that work because they are entirely contained in our training data, and we also omit the
one-billion word benchmark due to a high fraction of the dataset being contained in our training set. PTB escapes these
issues due to predating the modern internet. Our largest model sets a new SOTA on PTB by a substantial margin of 15
points, achieving a perplexity of 20.50. Note that since PTB is a traditional language modeling dataset it does not have
a clear separation of examples to define one-shot or few-shot evaluation around, so we measure only zero-shot.

3.1.2 LAMBADA

The LAMBADA dataset [PKL+16] tests the modeling of long-range dependencies in text – the model is asked to
predict the last word of sentences which require reading a paragraph of context. It has recently been suggested that the
continued scaling of language models is yielding diminishing returns on this difficult benchmark. [BHT+20] reflect on
the small 1.5% improvement achieved by a doubling of model size between two recent state of the art results ([SPP+19]

11

(Brown et al., 2020)
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3.1 The transition to Deep Learning

Consistent with the results from Amodei & Hernandez (2018), we find two very different trend regimes before and after
the advent of Deep Learning. Before then, the amount of compute required to train ML systems doubled once every 17
to 29 months. Subsequently, the overall trend speeds up and doubles every 4 to 9 months.

The trend in the Pre Deep Learning Era roughly matches Moore’s law, according to which transistor density doubles
roughly every two years (Moore, 1965) – often simplified to computational performance doubling every two years.

It is not clear when the Deep Learning Era starts3 — there are no noticeable discontinuities in the transition from the
Pre Deep Learning to the Deep Learning era. Moreover, our results barely change if we place the start of the Deep
Learning era in 2010 or in 2012, see Table 3.

1952 1960 1968 1976 1984 1992 2000 2008 2016
Publication date

1e+2

1e+4

1e+6

1e+8

1e+10

1e+12

1e+14

1e+16

1e+18

1e+20

1e+22

1e+24

Tr
ai

ni
ng

 c
om

pu
te

 (F
LO

Ps
)

Pr
e 

D
ee

p 
Le

ar
ni

ng
 E

ra

D
ee

p 
Le

ar
ni

ng
 E

ra

Training compute (FLOPs) of milestone Machine Learning systems over time
n = 121

Figure 2: Trends in training compute of n = 121 milestone ML systems between 1952 and 2022. Notice the change of slope in the
trends circa 2010.

Period Outliers Scale (FLOPs) Slope Doubling time R²

1952-2009 All models (n = 19) 3e+04 / 2e+14 0.2 OOMs/year [0.1; 0.2; 0.2] 21.3 months [16.2; 21.3; 31.3] 0.77

1952-2011 All models (n = 26) 1e+04 / 3e+15 0.2 OOMs/year [0.1; 0.2; 0.2] 19.6 months [15.6; 19.4; 25.0] 0.83

All models (n = 98) 1e+15 / 6e+22 0.7 OOMs/year [0.6; 0.7; 0.7] 5.6 months [5.0; 5.6; 6.2] 0.70
2010-2022

Regular-scale (n = 77) 4e+14 / 2e+22 0.7 OOMs/year [0.6; 0.7; 0.7] 5.6 months [5.1; 5.6; 6.2] 0.78

All models (n = 91) 1e+17 / 6e+22 0.6 OOMs/year [0.5; 0.6; 0.7] 5.7 months [4.9; 5.7; 6.7] 0.58
2012-2022

Regular-scale (n = 72) 4e+16 / 2e+22 0.6 OOMs/year [0.5; 0.6; 0.7] 5.7 months [4.9; 5.7; 6.7] 0.69

Table 3: Log-linear regression results for ML models from 1952 to 2022.

3We discuss the start of the Deep Learning Era in more detail in Appendix D.

4

(Sevilla et al., 2022)
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3.2 Trends in the Large-Scale era

Our data suggests that around 2015-2016 a new trend of large-scale models emerged, see Figure 3. This new trend
began with AlphaGo in late 2015 and continues up to the present day. These large-scale models were trained by large
corporations, whose larger training budgets presumably enabled them to break the previous trend.

Note that we made an intuitive decision in deciding which systems belong to this new large-scale trend. We justified it
post hoc as the systems that exceed a certain Z-value threshold with respect to nearby models, see Appendix A for
details on our method. See Appendix F for discussion on what makes large-scale models categorically different. There
is room for alternative interpretations of the data.

Separately, the trend of regular-scale models continued unperturbed. This trend before and after 2016 is continuous
and has the same slope, doubling every 5 to 6 months, see Table 4.4

The trend of increasing compute in large-scale models is apparently slower, doubling every 9 to 10 months. Since we
have limited data on these models, the apparent slow-down might be the result of noise.5

Our results contrast with Amodei & Hernandez (2018), who find a much faster doubling period of 3.4 months between
2012 and 2018, and with Lyzhov (2021), who finds a much longer doubling period of >2 years between 2018 and 2020.
We make sense of these discrepancies by noting that their analyses have limited data samples and assume a single trend
6, while ours studies large-scale and regular-scale models separately. Since the large-scale trend only recently emerged,
previous analyses could not differentiate these two distinct trends.7
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Figure 3: Trends in training compute of n102 milestone ML systems between 2010 and 2022. Notice the emergence of a possible
new trend of large-scale models around 2016. The trend in the remaining models stays the same before and after 2016.

4Among other reasons, this reinforces our belief that the trend of large-scale models is a separate one.
5In Appendix G we discuss some possible causes for this potential slowdown. In Appendix B we also show that the trend is

equally fast before and after September 2015 if we look only at record-setting models.
7We discuss this in more depth in Appendix E.
7Arguably we should pay most attention to the most compute-intensive models overall – these are the ones most likely to advance

the frontier. We do so in Appendix B, where we look at trends in record-setting models and find results consistent with those
presented in this section.

5

(Sevilla et al., 2022)
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Computer vision

Data-set Year Nb. images Size

MNIST (classification) 1998 60K 12Mb

Caltech 101 (classification) 2003 9.1K 130Mb

Caltech 256 (classification) 2007 30K 1.2Gb

CIFAR10 (classification) 2009 60K 160Mb

ImageNet (classification) 2012 1.2M 150Gb

MS-COCO (segmentation) 2015 200K 32Gb

Cityscape (segmentation) 2016 25K 60Gb

LAION-5B (multi-modal) 2022 5.85B 240Tb

Natural Language Processing

Data-set Year Size

SST2 (sentiment analysis) 2013 20Mb

WMT-18 (translation) 2018 7Gb

OSCAR (language model) 2020 6Tb
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The biggest lesson that can be read from 70 years of AI research is
that general methods that leverage computation are ultimately the
most effective, and by a large margin.

(Richard Sutton, 2019)

Quantity has a Quality All Its Own.

(Thomas A. Callaghan Jr., 1979)
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Implementing a deep network, PyTorch
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Deep-learning development is usually done in a framework:

Language(s) License Main backer

PyTorch Python, C++ BSD Facebook

TensorFlow Python, C++ Apache Google

JAX Python Apache Google

MXNet Python, C++, R, Scala Apache Amazon

CNTK Python, C++ MIT Microsoft

Torch Lua BSD Facebook

Theano Python BSD U. of Montreal

Caffe C++ BSD 2 clauses U. of CA, Berkeley

A fast, low-level, compiled backend to access computation devices, combined
with a slow, high-level, interpreted language. Python has an incredible
ecosystem and is used across fields.
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We will use the PyTorch framework for our experiments (Paszke et al., 2019).

http://pytorch.org

“PyTorch is a python package that provides two high-level features:

• Tensor computation (like NumPy) with strong GPU acceleration

• Deep Neural Networks built on a tape-based autograd system”
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MNIST data-set

28× 28 grayscale images, 60K train samples, 10K test samples.

(LeCun et al., 1998)
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model = nn.Sequential(
nn.Conv2d( 1, 32, 5), nn.MaxPool2d(3), nn.ReLU(),
nn.Conv2d(32, 64, 5), nn.MaxPool2d(2), nn.ReLU(),
nn.Flatten(),
nn.Linear(256, 200), nn.ReLU(),
nn.Linear(200, 10)

)

nb_epochs, batch_size = 10, 100
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr = 0.1)

model.to(device)
criterion.to(device)
train_input, train_targets = train_input.to(device), train_targets.to(device)

mu, std = train_input.mean(), train_input.std()
train_input.sub_(mu).div_(std)

for e in range(nb_epochs):
for input, targets in zip(train_input.split(batch_size),

train_targets.split(batch_size)):
output = model(input)
loss = criterion(output, targets)
optimizer.zero_grad()
loss.backward()
optimizer.step()

≃8s on a GTX1080, ≃1% test error
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The End
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