
Deep Learning

Practical Session 1

François Fleuret

https://fleuret.org/dlc/

March 12, 2023

Introduction

The objective of this session is to practice with basic tensor manipulations in pytorch, to understand the

relation between a tensor and its underlying storage, and get a sense of the efficiency of tensor-based

computation compared to their equivalent python iterative implementations.

You can get information about the practical sessions and the provided helper functions on the course’s

website.

https://fleuret.org/dlc/

1 Multiple views of a storage

Generate the matrix

1 2 1 1 1 1 2 1 1 1 1 2 1

2 2 2 2 2 2 2 2 2 2 2 2 2

1 2 1 1 1 1 2 1 1 1 1 2 1

1 2 1 3 3 1 2 1 3 3 1 2 1

1 2 1 3 3 1 2 1 3 3 1 2 1

1 2 1 1 1 1 2 1 1 1 1 2 1

2 2 2 2 2 2 2 2 2 2 2 2 2

1 2 1 1 1 1 2 1 1 1 1 2 1

1 2 1 3 3 1 2 1 3 3 1 2 1

1 2 1 3 3 1 2 1 3 3 1 2 1

1 2 1 1 1 1 2 1 1 1 1 2 1

2 2 2 2 2 2 2 2 2 2 2 2 2

1 2 1 1 1 1 2 1 1 1 1 2 1

with no python loop.

Hint: Use torch.full, and the slicing operator.

1 of 2

https://fleuret.org/dlc/
https://fleuret.org/dlc/

2 Eigendecomposition

Without using python loops, create a square matrix M (a 2d tensor) of dimension 20× 20, filled with
random Gaussian coefficients, and compute the eigenvalues of:

M−1

1 0 0

0 2
...

...
. . .

...
... 19 0

0 0 20

︸ ︷︷ ︸

diag(1,...,20)

M

Hint: Use torch.empty, torch.normal˙, torch.arange, torch.diag, torch.mm, torch.inverse,

and torch.linalg.eig.

3 Flops per second

Generate two square matrices of dimension 5000 × 5000 filled with random Gaussian coefficients,
compute their product, measure the time it takes, and estimate how many floating point products

have been executed per second (should be in the billions or tens of billions).

Hint: Use torch.empty, torch.normal˙, torch.mm, and time.perf˙counter.

4 Playing with strides

Write a function mul˙row, using python loops (and not even slicing operators), that gets a 2d tensor

as argument, and returns a tensor of same size, whose first row is identical to the first row of the

argument tensor, the second row is multiplied by two, the third by three, etc.

For instance:

¿¿¿ m = torch.full((4, 8), 2.0)

¿¿¿ m

tensor([[2., 2., 2., 2., 2., 2., 2., 2.],

[2., 2., 2., 2., 2., 2., 2., 2.],

[2., 2., 2., 2., 2., 2., 2., 2.],

[2., 2., 2., 2., 2., 2., 2., 2.]])

¿¿¿ mul˙row(m)

tensor([[2., 2., 2., 2., 2., 2., 2., 2.],

[4., 4., 4., 4., 4., 4., 4., 4.],

[6., 6., 6., 6., 6., 6., 6., 6.],

[8., 8., 8., 8., 8., 8., 8., 8.]])

Then, write a second version named mul˙row˙fast, using tensor operations.

Apply both versions to a matrix of size 1, 000× 400 and measure the time each takes (there should
be more than two orders of magnitude difference).

Hint: Use broadcasting and torch.arange, torch.view, torch.mul, and time.perf˙counter.

2 of 2

	Multiple views of a storage
	Eigendecomposition
	Flops per second
	Playing with strides

