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Occlusion sensitivity

François Fleuret Deep learning / 9.3. Visualizing the processing in the input 1 / 34



Another approach to understanding the functioning of a network is to look at
the behavior of the network “around” an image.

For instance, we can get a simple estimate of the importance of a part of the
input image for a given output by computing the difference between:

1. the value of that output on the original image, and

2. the value of the same output with that part occluded.

This is computationally intensive since it requires as many forward passes as
there are locations of the occlusion mask, ideally the number of pixels.
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Original images

Occlusion mask 32× 32
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Notes

A small 32 × 32 square will be moved at every
single location in the images. The first row shows
the original images, while the second shows the
perturbed images at a given location.



Original images

Occlusion sensitivity, mask 32× 32, stride of 2, VGG19
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Notes

At every location in a given image,

• we occlude a 32 × 32 square by filling it
with the mean pixel value,

• we compute the response of the classifier
for the predicted class of the image
(labrador for instance),

• we compute the difference between the
score of the predicted class on the original,
and the score of this same class when the
image is occluded at that location.

At each location, we have a score showing how
the response of the true class evolves, and we
represent it as an heat map:

• red pixels when the score of the true class
on the perturbed image is lower than on

the original image,

• blue values when the true class is predicted
with a greater confidence on the perturbed
image.

We see that when hiding the head of the dog,
the network is less confident in predicting class
“labrador”. This shows that the head of the dog
is a very important queue, because when it is
hidden, the response goes down strongly.
For the elephant, it seems that its ears are the
important cues.
For the pinguin, surprisingly, the ice matters a
lot and not the pinguin itself.
For the car, the back and the front are the im-
portant parts.



Saliency maps
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An alternative is to compute the gradient of an output with respect to the input (Erhan
et al., 2009; Simonyan et al., 2013), e.g.

∇|x fc (x ;w)

where |x stresses that the gradient is computed with respect to the input x and not as
usual with respect to the parameters w .
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This can be implemented with torch.autograd.grad to compute the gradient w.r.t.
the input image (this has the advantage of not changing the model’s parameter
gradients, contrary to torch.autograd.backward.)

input.requires_grad_()
output = model(input)
grad_input, = torch.autograd.grad(output[0, c], input)

Note that since torch.autograd.grad computes the gradient of a function with
possibly multiple inputs, the returned result is a tuple.
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Notes

Remember that PyTorch models take as input a
batch of samples. So the output of one classifi-
cation network is of size N × C , where N is the
number of samples in the batch to process, and
C the number of classes.
Here, we input a batch of one sample, so we
access the prediction of the true class with
output[0, c].



The resulting maps are quite noisy. For instance with AlexNet:
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Notes

The images at the bottom where generated by
computing the gradient of the most responsive
unit w.r.t. the input image, and summing the
gradient over the three input channels red, green,
and blue to produce a gray-scale image.
We have the same behavior as with the occlusion
sensitivity. For instance, pixels around the dog
head have a high gradient: perturbing the pixels
of the head will have more impact on the output
class prediction than perturbing its body.
These results are more noisy because we are at
the pixel level.



This is due to the local irregularity of the network’s response as a function of the input.

Sharper sensitivity maps: removing noise by adding noise

ously differentiable.

Fig. 2 gives example of strongly fluctuating partial deriva-
tives. This fixes a particular image x, and an image pixel
xi, and plots the values of ∂Sc

∂xi
(t) as fraction of the maxi-

mum entry in the gradient vector, maxi
∂Sc

∂xi
(t), for a short

line segment x + tε in the space of images parameterized
by t ∈ [0, 1]. We show it as a fraction of the maximum
entry in order to verify that the fluctuations are significant.
The length of this segment is small enough that the start-
ing image x and the final image x + ε looks the same to
a human. Furthermore, each image along the path is cor-
rectly classified by the model. The partial derivatives with
respect to the red, green, and blue components, however,
change significantly.

Figure 2. The partial derivative of Sc with respect to the RGB val-
ues of a single pixel as a fraction of the maximum entry in the
gradient vector, maxi

∂Sc
∂xi

(t), (middle plot) as one slowly moves
away from a baseline image x (left plot) to a fixed location x+ ε
(right plot). ε is one random sample from N (0, 0.012). The fi-
nal image (x+ ε) is indistinguishable to a human from the origin
image x.

Given these rapid fluctuations, the gradient of Sc at any
given point will be less meaningful than a local average
of gradient values. This suggests a new way to create im-
proved sensitivity maps: instead of basing a visualization
directly on the gradient ∂Sc, we could base it on a smooth-
ing of ∂Sc with a Gaussian kernel.

Directly computing such a local average in a high-
dimensional input space is intractable, but we can compute
a simple stochastic approximation. In particular, we can
take random samples in a neighborhood of an input x, and
average the resulting sensitivity maps. Mathematically, this
means calculating

M̂c(x) =
1

n

n∑

1

Mc(x+N (0, σ2))

where n is the number of samples, andN (0, σ2) represents
Gaussian noise with standard deviation σ. We refer to this
method as SMOOTHGRAD throughout the paper.

3. Experiments
To assess the SMOOTHGRAD technique, we performed a
series of experiments using a neural network for image
classification (Szegedy et al., 2016; TensorFlow, 2017).
The results suggest the estimated smoothed gradient, M̂c,
leads to visually more coherent sensitivity maps than the
unsmoothed gradient Mc, with the resulting visualizations
aligning better–to the human eye–with meaningful fea-
tures.

Our experiments were carried out using an Inception v3
model (Szegedy et al., 2016) that was trained on the
ILSVRC-2013 dataset (Russakovsky et al., 2015) and a
convolutional MNIST model based on the TensorFlow tu-
torial (TensorFlow, 2017).

3.1. Visualization methods and techniques

Sensitivity maps are typically visualized as heatmaps.
Finding the right mapping from a channel values at a pixel
to a particular color turns out to be surprisingly nuanced,
and can have a large effect on the resulting impression of
the visualization. This section summarizes some visualiza-
tion techniques and lessons learned in the process of com-
paring various sensitivity map work. Some of these tech-
niques may be universally useful regardless of the choice
of sensitivity map methods.

Absolute value of gradients

Sensitivity map algorithms often produce signed values.
There is considerable ambiguity in how to convert signed
values to colors. A key choice is whether to represent pos-
itive and negative values differently, or to visualize the ab-
solute value only. The utility of taking the absolute val-
ues of gradients or not depends on the characteristics of the
dataset of interest. For example, when the object of inter-
est has the same color across the classes (e.g., digits are
always white in MNIST digits (LeCun et al., 2010)), the
positive gradients indicate positive signal to the class. On
the other hand, for ImageNet dataset (Russakovsky et al.,
2015), we have found that taking the absolute value of the
gradient produced clearer pictures. One possible explana-
tion for this phenomenon is that the direction is context de-
pendent: many image recognition tasks are invariant under
color and illumination changes. For instance, in classifying
a ball, a dark ball on a bright background would have nega-
tive gradient, while white ball on darker background would
have a positive gradient.

Capping outlying values

Another property of the gradient that we observe is the
presence of few pixels that have much higher gradients than
the average. This is not a new discovery — this property
was utilized in generating adversarial examples that are in-

(Smilkov et al., 2017)
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Smilkov et al. (2017) proposed to smooth the gradient with respect to the input image
by averaging over slightly perturbed versions of the latter.

∇̃|x fy (x ;w) =
1

N

N∑
n=1

∇|x fy (x + ϵn;w)

where ϵ1, . . . , ϵN are i.i.d of distribution 𝒩 (0, σ2I), and σ is a fraction of the gap ∆
between the maximum and the minimum of the pixel values.
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A simple version of this “SmoothGrad” approach can be implemented as follows

std = std_fraction * (img.max() - img.min())
acc_grad = img.new_zeros(img.size())

for q in range(nb_smooth): # This should be done with mini-batches ...
noisy_input = img + img.new(img.size()).normal_(0, std)
noisy_input.requires_grad_()
output = model(noisy_input)
grad_input, = torch.autograd.grad(output[0, c], noisy_input)
acc_grad += grad_input

acc_grad = acc_grad.abs().sum(1) # sum across channels
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Notes

std_fraction is typically between 0.1 and 0.25.
Remember that new_* initialize tensors with the
same type and same device as the input tensor.
Here, acc_grad will be on the GPU if img already
is, on the CPU otherwise.
At then end, .sum(1) sums across RGB channels,
so we go from a tensor of size 1 × 3 × 224 × 224
to a tensor of size 1 × 224 × 224, which can be
represented as a gray-scale image. Here, the 1 is
for a mini-batch of one sample.
This code could be made more efficient by pro-
cessing the perturbed images in mini-batches.



Original images

Gradient, VGG19

SmoothGrad, VGG19, σ = ∆
4
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Notes

The middle row is the original version by comput-
ing the derivative w.r.t. the original input only.
The bottom row is when averaging over a hundred
perturbed images.
The smooth version exhibit more details such as
the ears of the dog, the legs of the elephant, the
head of the pinguin the wheels of the car.
Overall, we get a sense of what the important
parts of the image are, and which of them are
carrying information for the prediction.



Deconvolution and guided back-propagation
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Zeiler and Fergus (2014) proposed to invert the processing flow of a convolutional
network by constructing a corresponding deconvolutional network to compute the
“activating pattern” of a sample.

As they point out, the resulting processing is identical to a standard backward pass,
except when going through the ReLU layers.
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Remember that if s is one of the input to a ReLU layer, and x the corresponding
output, we have for the forward pass

x = max(0, s),

and for the backward
∂𝓁

∂s
= 1{s>0}

∂𝓁

∂x
.
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Zeiler and Fergus’s deconvolution can be seen as a backward pass where we propagate
back through ReLU layers the quantity

max

(
0,

∂𝓁

∂x

)
= 1{ ∂𝓁

∂x
>0}

∂𝓁

∂x
,

instead of the usual
∂𝓁

∂s
= 1{s>0}

∂𝓁

∂x
.

This quantity is positive for units whose output has a positive contribution to the
response, kills the others, and is not modulated by the pre-layer activation s.
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Springenberg et al. (2014) improved upon the deconvolution with the guided
back-propagation, which aims at the best of both worlds: Discarding structures which
would not contribute positively to the final response, and discarding structures which
are not already present.

It back-propagates through the ReLU layers the quantity

1{s>0}1{ ∂𝓁
∂x

>0}
∂𝓁

∂x

which keeps only units which have a positive contribution and activation.
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So these three visualization methods differ only in the quantities propagated through
ReLU layers during the back-pass:

• back-propagation (Erhan et al., 2009; Simonyan et al., 2013):

1{s>0}
∂𝓁

∂x
,

• deconvolution (Zeiler and Fergus, 2014):

1{ ∂𝓁
∂x

>0}
∂𝓁

∂x
,

• guided back-propagation (Springenberg et al., 2014):

1{s>0}1{ ∂𝓁
∂x

>0}
∂𝓁

∂x
.
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These procedures can be implemented simply in PyTorch by changing the nn.ReLU’s
backward pass.

The class nn.Module provides methods to register “hook” functions that are called
during the forward or the backward pass, and can implement a different computation for
the latter.
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For instance

>>> x = torch.tensor([ 1.23, -4.56 ])
>>> m = nn.ReLU()
>>> m(x)
tensor([ 1.2300, 0.0000])

>>> def my_hook(m, input, output):
... print(str(m) + ' got ' + str(input[0].size()))
...
>>> handle = m.register_forward_hook(my_hook)
>>> m(x)
ReLU() got torch.Size([2])
tensor([ 1.2300, 0.0000])

>>> handle.remove()
>>> m(x)
tensor([ 1.2300, 0.0000])
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Notes

The top example shows the default behavior of
nn.ReLU() which simply set to zero negative
coefficients of the input and returns the new
tensor.
We define a hook my_hook which simply prints
the name of the module and the size of the input.
Then we attach the hook to the forward pass
of out model m. Attaching the hook returns a
handle useful for removing the hook later.
PyTorch provides:

• “forward pre-hooks” through
register_module_forward_pre_hook.
This hook is called before forward is
invoked.

• “forward hooks” through
register_module_forward_hook. This
hook is called after forward has computed
the output.

• “backward hooks” through
register_module_backward_hook. This
hook is called after the module has
computed the gradient w.r.t. its input.



Using hooks, we can implement the deconvolution as follows:

def relu_backward_deconv_hook(module, grad_input, grad_output):
return F.relu(grad_output[0]),

def equip_model_deconv(model):
for m in model.modules():

if isinstance(m, nn.ReLU):
m.register_backward_hook(relu_backward_deconv_hook)
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def grad_view(model, image_name):
to_tensor = transforms.ToTensor()
img = to_tensor(PIL.Image.open(image_name))
img = 0.5 + 0.5 * (img - img.mean()) / img.std()

model.to(device)
img = img.to(device)

input = img.view(1, img.size(0), img.size(1), img.size(2)).requires_grad_()
output = model(input)
result, = torch.autograd.grad(output.max(), input)

result = result / result.max() + 0.5

return result

model = models.vgg16(weights = 'IMAGENET1K_V1')
model.eval()
model = model.features
equip_model_deconv(model)
result = grad_view(model, 'blacklab.jpg')
utils.save_image(result, 'blacklab-vgg16-deconv.png')
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The code is the same for the guided back-propagation, except the hooks themselves:

def relu_forward_gbackprop_hook(module, input, output):
module.input_kept = input[0]

def relu_backward_gbackprop_hook(module, grad_input, grad_output):
return F.relu(grad_output[0]) * F.relu(module.input_kept).sign(),

def equip_model_gbackprop(model):
for m in model.modules():

if isinstance(m, nn.ReLU):
m.register_forward_hook(relu_forward_gbackprop_hook)
m.register_backward_hook(relu_backward_gbackprop_hook)
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Original

Gradient

Deconvolution

Guided-backprop

François Fleuret Deep learning / 9.3. Visualizing the processing in the input 24 / 34



Experiments with an AlexNet-like network. Original images + deconvolution (or filters)
for the top-9 activations for channels picked randomly.

(Zeiler and Fergus, 2014)
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(Zeiler and Fergus, 2014)
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Grad-CAM
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Gradient-weighted Class Activation Mapping (Grad-CAM) proposed by Selvaraju et al.
(2016) visualizes the importance of the input sub-parts according to the activations in a
specific layer.

It computes a sum of the activations weighted by the average gradient of the output of
interest w.r.t. individual channels.
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Formally, let k ∈ {1, . . . ,C} be a channel number, Ak ∈ RH×W the output feature map
k of the selected layer, c a class number, and y c the network’s logit for that class.

The channel weights are

αc
k =

1

HW

H∑
i=1

W∑
j=1

∂y c

∂Ak
i,j

.

And the final localization map is

LcGrad-CAM = ReLU

(
C∑

k=1

αc
kA

k

)
.
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We are going to test it with VGG19.

VGG(
(features): Sequential(

(0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): ReLU(inplace=True)
/.../
(34): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(35): ReLU(inplace=True)
(36): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)

)
(avgpool): AdaptiveAvgPool2d(output_size=(7, 7))
(classifier): Sequential(

(0): Linear(in_features=25088, out_features=4096, bias=True)
(1): ReLU(inplace=True)
(2): Dropout(p=0.5, inplace=False)
(3): Linear(in_features=4096, out_features=4096, bias=True)
(4): ReLU(inplace=True)
(5): Dropout(p=0.5, inplace=False)
(6): Linear(in_features=4096, out_features=1000, bias=True)

)
)
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To implement Grad-CAM, first define hooks to store the feature maps in the forward
pass, and the gradient w.r.t. them in the backward:

def hook_store_A(module, input, output):
module.A = output[0]

def hook_store_dydA(module, grad_input, grad_output):
module.dydA = grad_output[0]

Then, load a pre-trained VGG19, and install the hooks in the last ReLU layer of the
convolutional part:

model = torchvision.models.vgg19(weights = 'IMAGENET1K_V1')
model.eval()

layer = model.features[35] # Last ReLU of the conv layers

layer.register_forward_hook(hook_store_A)
layer.register_backward_hook(hook_store_dydA)
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Load an image and make it a one sample batch:

to_tensor = torchvision.transforms.ToTensor()
input = to_tensor(PIL.Image.open('example_images/elephant_hippo.png')).unsqueeze(0)

Compute the network’s output, the gradient, and LcGrad-CAM:

output = model(input)

c = 386 # African elephant
output[0, c].backward()

alpha = layer.dydA.mean((2, 3), keepdim = True)
L = torch.relu((alpha * layer.A).sum(1, keepdim = True))

Save it as a resized colored heat-map:

L = L / L.max()
L = F.interpolate(L, size = (input.size(2), input.size(3)),

mode = 'bilinear', align_corners = False)

l = L.view(L.size(2), L.size(3)).detach().numpy()
PIL.Image.fromarray(numpy.uint8(cm.gist_earth(l) * 255)).save('result.png')
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Notes

unsqueeze(0) turns the input tensor of size
3 × H × W into a batch of a single tensor of
size 1 × 3 × H × W .
mean((2, 3), keepdim = True) computes the
mean over the height and width of the image. So
we go from a tensor of size 1 × 3 × H × W to
a tensor of size 1 × 3 × 1 × 1. The last two “1”
are preserved by keepdim = True.
gist_earth is a color map with orange color
for high values, blue for low ones, and green for
intermediate ones.



African elephant Hippopotamus

Ox Fountain
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Coffee mug Bagel

Bee Daisy
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