
Deep learning

8.5. DataLoader and neuro-surgery

François Fleuret

https://fleuret.org/dlc/

https://fleuret.org/dlc/

torch.utils.data.DataLoader

François Fleuret Deep learning / 8.5. DataLoader and neuro-surgery 1 / 13

Until now, we have dealt with image sets that could fit in memory, and we
manipulated them as regular tensors, e.g.

train_set = torchvision.datasets.MNIST(root = data_dir,
train = True, download = True)

train_input = train_set.data.view(-1, 1, 28, 28).float()
train_targets = train_set.targets

However, large sets do not fit in memory, and samples have to be constantly
loaded during training.

ImageNet LSVRC 2012 Images 151Gb

LSUN (all classes) Images 1.7Tb

OSCAR Text 6Tb

This requires a [sophisticated] machinery to parallelize the loading itself, but
also the normalization, and data-augmentation operations.

François Fleuret Deep learning / 8.5. DataLoader and neuro-surgery 2 / 13

PyTorch offers the torch.utils.data.DataLoader object which combines a
data-set and a sampling policy to create an iterator over mini-batches.

Standard data-sets are available in torchvision.datasets, and they allow to
apply transformations over the images or the labels transparently.

If needed, torchvision.datasets.ImageFolder creates a data-set from files
located in a folder, and torch.utils.data.TensorDataset from a tensor.
The latter is useful for synthetic toy examples or small data-sets.

François Fleuret Deep learning / 8.5. DataLoader and neuro-surgery 3 / 13

from torch.utils.data import DataLoader
from torchvision import datasets, transforms

data_dir = os.environ.get('PYTORCH_DATA_DIR') or './data/mnist/'

train_transforms = transforms.Compose(
[

transforms.ToTensor(),
transforms.Normalize(mean = (0.1302,), std = (0.3069,))

]
)

train_loader = DataLoader(
datasets.MNIST(root = data_dir, train = True, download = True,

transform = train_transforms),
batch_size = 100,
num_workers = 4,
shuffle = True,
pin_memory = torch.cuda.is_available()

)

François Fleuret Deep learning / 8.5. DataLoader and neuro-surgery 4 / 13

Notes

This is an example of how to use DataLoader
from PyTorch for the MNIST dataset.
Note that the arguments to
transforms.Normalize() specify the mean and
standard deviation to be used for normalization,
and not the target ones.
num_workers is the number of treads used by the
CPU to load and prepare the mini-batch.
pin_memory is useful when training on the GPU.
This allocates the samples on a page-locked mem-
ory which speeds up the transfer between CPU
and GPU.

Given this train_loader, we can now re-write our training procedure with a loop over
the mini-batches

for e in range(nb_epochs):
for input, targets in iter(train_loader):

input, targets = input.to(device), targets.to(device)

output = model(input)
loss = criterion(output, targets)

model.zero_grad()
loss.backward()
optimizer.step()

François Fleuret Deep learning / 8.5. DataLoader and neuro-surgery 5 / 13

Notes

DataLoaders are very convenient for training with
very large data sets because they completely ab-
stract the loading and the pre-processing of the
data.

Example of neuro-surgery and fine-tuning in PyTorch

François Fleuret Deep learning / 8.5. DataLoader and neuro-surgery 6 / 13

As an example of re-using a network and fine-tuning it, we will construct a network for
CIFAR10 composed of:

• the first layer of an [already trained] AlexNet,

• several resnet blocks,

• a final channel-wise averaging, using nn.AvgPool2d, and

• a final fully connected linear layer nn.Linear.

During training, we will keep the AlexNet features frozen for a few epochs. This is done
by setting requires_grad of the related Parameters to False.

François Fleuret Deep learning / 8.5. DataLoader and neuro-surgery 7 / 13

Notes

This example is a little bit artificial but demon-
strates common operations to build a new net-
work for another task:

• Loading and existing a pre-trained network,

• extending it with new layers,

• changing the final classifier layers,

• freeze some layers (i.e. they will not be
updated during fine-tuning).

data_dir = os.environ.get('PYTORCH_DATA_DIR') or './data/cifar10/'

num_workers = 4
batch_size = 64

transform = torchvision.transforms.ToTensor()

train_set = datasets.CIFAR10(root = data_dir, train = True,
download = True, transform = transform)

train_loader = utils.data.DataLoader(train_set, batch_size = batch_size,
shuffle = True, num_workers = num_workers)

test_set = datasets.CIFAR10(root = data_dir, train = False,
download = True, transform = transform)

test_loader = utils.data.DataLoader(test_set, batch_size = batch_size,
shuffle = False, num_workers = num_workers)

François Fleuret Deep learning / 8.5. DataLoader and neuro-surgery 8 / 13

class ResBlock(nn.Module):
def __init__(self, nb_channels, kernel_size):

super().__init__()

self.conv1 = nn.Conv2d(nb_channels, nb_channels, kernel_size,
padding = (kernel_size-1)//2)

self.bn1 = nn.BatchNorm2d(nb_channels)

self.conv2 = nn.Conv2d(nb_channels, nb_channels, kernel_size,
padding = (kernel_size-1)//2)

self.bn2 = nn.BatchNorm2d(nb_channels)

def forward(self, x):
y = self.bn1(self.conv1(x))
y = F.relu(y)
y = self.bn2(self.conv2(y))
y += x
y = F.relu(y)
return y

François Fleuret Deep learning / 8.5. DataLoader and neuro-surgery 9 / 13

class Monster(nn.Module):
def __init__(self, nb_blocks, nb_channels):

super().__init__()

alexnet = torchvision.models.alexnet(weights = 'IMAGENET1K_V1')

self.features = nn.Sequential(alexnet.features[0], nn.ReLU(inplace = True))

dummy = self.features(torch.zeros(1, 3, 32, 32)).size()
alexnet_nb_channels = dummy[1]
alexnet_map_size = tuple(dummy[2:4])

self.conv = nn.Conv2d(alexnet_nb_channels, nb_channels, kernel_size = 1)

self.resblocks = nn.Sequential(
*(ResBlock(nb_channels, kernel_size = 3) for _ in range(nb_blocks))

)

self.avg = nn.AvgPool2d(kernel_size = alexnet_map_size)
self.fc = nn.Linear(nb_channels, 10)

François Fleuret Deep learning / 8.5. DataLoader and neuro-surgery 10 / 13

Notes

self.features consists of the first layer of a
pre-trained AlexNet.
To make avoid hard-coding the kernel sizes, we
empirically compute them on a dummy tensor:

• alexnet_nb_channels is the number of
filters in self.features,

• alexnet_map_size is the size of the
tensor which is passed as input to the
resnet blocks, and is also the size of the
activation maps after the resnet blocks
because the padding is such tht the
activation maps size is preserved.

def forward(self, x):
x = self.features(x)
x = F.relu(self.conv(x))
x = self.resblocks(x)
x = F.relu(self.avg(x))
x = x.view(x.size(0), -1)
x = self.fc(x)
return x

François Fleuret Deep learning / 8.5. DataLoader and neuro-surgery 11 / 13

nb_epochs = 50
nb_blocks, nb_channels = 8, 64

model, criterion = Monster(nb_blocks, nb_channels), nn.CrossEntropyLoss()

model.to(device)
criterion.to(device)

optimizer = torch.optim.Adam(model.parameters(), lr = 1e-2)

for e in range(nb_epochs):
Freeze the features during half of the epochs
for p in model.features.parameters():

p.requires_grad = e >= nb_epochs // 2

acc_loss = 0.0

for input, targets in iter(train_loader):
input, targets = input.to(device), targets.to(device)

output = model(input)
loss = criterion(output, targets)
acc_loss += loss.item()

optimizer.zero_grad()
loss.backward()
optimizer.step()

print(e, acc_loss)

François Fleuret Deep learning / 8.5. DataLoader and neuro-surgery 12 / 13

Notes

In the first half of the training, we keep the
AlexNet features frozen. This is done by set-
ting requires_grad of the related Parameters
to False.

nb_test_errors, nb_test_samples = 0, 0

model.eval()

for input, targets in iter(test_loader):
input, targets = input.to(device), targets.to(device)

output = model(input)
wta = torch.argmax(output.data, 1).view(-1)

for i in range(targets.size(0)):
nb_test_samples += 1
if wta[i] != targets[i]: nb_test_errors += 1

test_error = 100 * nb_test_errors / nb_test_samples
print(f'test_error {test_error:.02f}% ({nb_test_errors}/{nb_test_samples})')

François Fleuret Deep learning / 8.5. DataLoader and neuro-surgery 13 / 13

	torch.utils.data.DataLoader
	Example of neuro-surgery and fine-tuning in PyTorch

