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The use of the ReLU activation function was a great improvement compared to
the historical tanh (Glorot et al., 2011; Krizhevsky et al., 2012).
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This can be explained by the derivative of RelLU itself not vanishing, and by the
resulting coding being sparse (Glorot et al., 2011).

Frangois Fleuret Deep learning / 6.2. Rectifiers

Notes

The derivative of tanh has an exponential tail on
both sides and collapses to 0 very quickly, while
ReLU keeps the gradient of positive activations
unchanged, which often correspond to half of
them. In practice it helps mitigating the gradient
vanishing problem, and allows to train deeper
architectures.
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The steeper slope in the loss surface speeds up the training.
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Figure 1: A four-layer convolutional neural
network with ReLUs (solid line) reaches a 25%
training error rate on CIFAR-10 six times faster
than an equivalent network with tanh neurons
(dashed line). The learning rates for each net-
work were chosen independently to make train-
ing as fast as possible. No regularization of
any kind was employed. The magnitude of the
effect demonstrated here varies with network
architecture, but networks with ReLUs consis-
tently learn several times faster than equivalents
with saturating neurons.
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(Krizhevsky et al., 2012)
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A first variant of ReLU is Leaky-ReLU (Maas et al., 2013)

R—R

x — max(ax, x)

with 0 < a < 1 usually small.
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The parameter a can be optimized during training (PReLU, He et al., 2015), or
randomized for every sample (RReLU, Xu et al., 2015).
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The “maxout” layer proposed by Goodfellow et al. (2013) takes the max of several
linear units. This is not an activation function in the usual sense, since it has trainable
parameters.
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It can in particular encode ReLU and absolute value, but can also approximate any
convex function.

VAV,
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Clevert et al. (2015) proposed the exponential linear unit (ELU), with an exponential

saturation
s X if x>0
x a(e*—1) otherwise.
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Another variant is the “Concatenated Rectified Linear Unit" (CReLU) proposed
by Shang et al. (2016):

R — R?

x +— (max(0, x), max(0, —x)),

which doubles the number of activations but keeps the norm of the signal intact during
both the forward and the backward passes.
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Notes

CReLU allows to build an invertible mapping.
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