
Deep learning

5.2. Stochastic gradient descent

François Fleuret

https://fleuret.org/dlc/

https://fleuret.org/dlc/


To minimize a loss of the form

ℒ (w) =
N∑

n=1

𝓁(f (xn;w), yn)︸ ︷︷ ︸
𝓁n(w)

the standard gradient-descent algorithm update has the form

wt+1 = wt − η∇ℒ (wt).

François Fleuret Deep learning / 5.2. Stochastic gradient descent 1 / 17

Notes

Here

• N is the total number of samples,

• xn is a sample with label yn,

• 𝓁 is the function to evaluate how bad the
predictor f is on the samples.



A straight-forward implementation would be

for e in range(nb_epochs):
output = model(train_input)
loss = criterion(output, train_target)

model.zero_grad()
loss.backward()
with torch.no_grad():

for p in model.parameters(): p -= eta * p.grad

However, the memory footprint is proportional to the full set size. This can be
mitigated by summing the gradient through “mini-batches”:

for e in range(nb_epochs):
model.zero_grad()

for b in range(0, train_input.size(0), batch_size):
output = model(train_input[b:b+batch_size])
loss = criterion(output, train_target[b:b+batch_size])
loss.backward()

with torch.no_grad():
for p in model.parameters(): p -= eta * p.grad

François Fleuret Deep learning / 5.2. Stochastic gradient descent 2 / 17

Notes

An “epoch” corresponds to visiting the full train-
ing set once. The criterion is the function used to
evaluate the prediction (MSE loss, cross-entropy
loss, etc.) p.grad is the gradient of the loss w.r.t.
the parameter.
Using “mini-batches” prevents from evaluating
the model on the full data set in one shot, which
would be intractable with a large data set.
Both pieces of code produce the exact same re-
sult, because loss.backward() accumulates the
gradient in the grad field of the variables, by lin-
earity of the gradient operator, so that the grad
fields contain the same gradient values after the
loop over all the samples.
Processing the training data set by “mini-batches”
solves the first issue which is the memory foot-
print. The mini-batches size can be arbitrarily
small.



While it makes sense in principle to compute the gradient exactly, in practice:

• It takes time to compute (more exactly all our time!).

• It is an empirical estimation of a hidden quantity, and any partial sum is also an
unbiased estimate, although of greater variance.

• It is computed incrementally

∇ℒ (wt) =
N∑

n=1

∇𝓁n(wt),

and when we compute ∇𝓁n, we have already computed ∇𝓁1, . . . ,∇𝓁n−1, and we
could have a better estimate of w∗ than wt .

François Fleuret Deep learning / 5.2. Stochastic gradient descent 3 / 17



To illustrate how partial sums are good estimates, consider an ideal case where the
training set is the same set of M ≪ N samples replicated K times. Then

ℒ (w) =
N∑

n=1

𝓁(f (xn;w), yn)

=
K∑

k=1

M∑
m=1

𝓁(f (xm;w), ym)

= K
M∑

m=1

𝓁(f (xm;w), ym).

So instead of summing over all the samples and moving by η, we can visit only
M = N/K samples and move by Kη, which would cut the computation by K .

Although this is an ideal case, there is redundancy in practice that results in similar
behaviors.

François Fleuret Deep learning / 5.2. Stochastic gradient descent 4 / 17

Notes

To make it more concrete, we can imagine that
the training set of size N = 1,000,000 samples is
actually M = 2,000 samples replicated K = 500
times.
Computing the loss on this training set give the
same result as computing the loss on the 2,000
samples, and then multiply this partial loss by 500
to get the loss on the full data set, or equivalently
one can use Kη as step size.



The stochastic gradient descent consists of updating the parameters wt after every
sample

wt+1 = wt − η∇𝓁n(t)(wt).

However this does not benefit from the speed-up of batch-processing.

The mini-batch stochastic gradient descent is the standard procedure for deep learning.
It consists of visiting the samples in “mini-batches”, each of a few tens of samples, and
updating the parameters each time.

wt+1 = wt − η

B∑
b=1

∇𝓁n(t,b)(wt).

The order n(t, b) to visit the samples can either be sequential, or uniform sampling,
usually without replacement.

The stochastic behavior of this procedure helps evade local minima.

François Fleuret Deep learning / 5.2. Stochastic gradient descent 5 / 17

Notes

The order n(t, b) to visit the samples can either
be:

• sequential, in the natural order of the data
set. This can be problematic, if the data
set is made such that all the elements of
the same class appear all together;

• uniform sampling (usually without
replacement), which consists in shuffling
the samples before visiting them. If the
sampling is done with replacement, the
same sample may be used several times in
the same epoch, in which case an epoch
means using as many samples as the size
of the training set.

This “mini-batch gradient descent” is an efficient
procedure because:

• it benefits from the speed-up of
batch-processing,

• the model is updated more frequently by
taking into account the redundancy in the
data,

• local minima can be evaded due to the
randomness of the process.



So our exact gradient descent with mini-batches

for e in range(nb_epochs):
model.zero_grad()

for b in range(0, train_input.size(0), batch_size):
output = model(train_input[b:b+batch_size])
loss = criterion(output, train_target[b:b+batch_size])
loss.backward()

with torch.no_grad():
for p in model.parameters(): p -= eta * p.grad

can be modified into the mini-batch stochastic gradient descent as follows:

for e in range(nb_epochs):
for b in range(0, train_input.size(0), batch_size):

output = model(train_input[b:b+batch_size])
loss = criterion(output, train_target[b:b+batch_size])

model.zero_grad()
loss.backward()
with torch.no_grad():

for p in model.parameters(): p -= eta * p.grad

François Fleuret Deep learning / 5.2. Stochastic gradient descent 6 / 17

Notes

In the “mini-batch gradient descent”, the gradi-
ent is computed on a mini-batch and the model
is then updated.



0 60000 120000 180000 240000 300000

Nb. samples seen

101

102

103

B
es

t
tr

ai
n

lo
ss

Mini-batch size and loss reduction (MNIST)

60k

10k

1k

100

10

1

François Fleuret Deep learning / 5.2. Stochastic gradient descent 7 / 17

Notes

This graph shows the training loss of a simple
LeNet model trained on MNIST as a function
of the number of training samples seen. The
training set contains 60,000 samples.
The loss is computed on the full training set, and
is the “best so far” to make the curves easier
to read: if after an update, the training loss in-
creases, we keep the previous value to plot. This
is why the curves are decreasing with plateaus.
Each curve represents a training done with one
particular mini-batch size, that is the number of
samples used to make one update. Note that a
batch of size 60k corresponds to classical “non-
stochastic” gradient descent, where the full train-
ing set is used for an update. A batch size of

1 is pure stochastic gradient descent where we
update the model after each sample.
These curves show that:

• it works far better to update the
parameters more often, that is using only a
small number of samples for each update,

• there is no use at using very small batches
or to look at samples individually: a
mini-batch of 100 samples is as efficient as
stochastic gradient descent, but benefits
from the speed-up of batch processing.

Note that learning rates were optimized for each
mini-batch size.



Limitation of the gradient descent

François Fleuret Deep learning / 5.2. Stochastic gradient descent 8 / 17



The gradient descent method makes a strong assumption about the magnitude of the
“local curvature” to fix the step size, and about its isotropy so that the same step size
makes sense in all directions.

−3 −2 −1 0 1 2 3 −3−2−1 0 1 2 3

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

η = 1.0e − 2 η = 1.0e − 2

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

η = 4.0e − 2 η = 5.0e − 2 η = 5.3e − 2

François Fleuret Deep learning / 5.2. Stochastic gradient descent 9 / 17

Notes

This example illustrates the drawback of the gra-
dient descent when the loss is not isotropic. The
black lines are the level lines of the R2 → R
mapping to minimize, and the red polygonal line
shows the trajectory of gradient descent starting
at the black circle.

• When the curvature is the same in both x
and y directions (top middle), the gradient
descent goes straight to the minimum.

• When the curvature is not isotropic (top
right and all bottom), the descent goes

faster where the slope is steeper, here in
the y direction.

• Increasing the learning rate to reach the
minimum in x is better (bottom left).

• But having a step size which suits the x
direction creates oscillations (bottom
center).

• And eventually diverges in the y direction.

This example shows that gradient descent should
have a different learning rate for each direction.



Some optimization methods leverage higher-order moments, in particular second order
to use a more accurate local model of the functional to optimize.

However for a fixed computational budget, the complexity of these methods reduces the
total number of iterations, and the eventual optimization is worse.

Deep-learning generally relies on a smarter use of the gradient, using statistics over its
past values to make a “smarter step” with the current one.

François Fleuret Deep learning / 5.2. Stochastic gradient descent 10 / 17



Momentum and moment estimation

François Fleuret Deep learning / 5.2. Stochastic gradient descent 11 / 17



The “vanilla” mini-batch stochastic gradient descent (SGD) consists of

wt+1 = wt − ηgt ,

where

gt =
B∑

b=1

∇𝓁n(t,b)(wt)

is the gradient summed over a mini-batch.

François Fleuret Deep learning / 5.2. Stochastic gradient descent 12 / 17

Notes

Here

• wt is the current estimate of the
parameter,

• wt+1 is the update of the estimate,

• gt is the gradient computed over a
mini-batch of samples with parameter wt ,

• n(t, b) is the index of the bth sample of
the mini-batch used at iteration t.



The first improvement is the use of a “momentum” to add inertia in the choice of the
step direction

ut = γut−1 + ηgt

wt+1 = wt − ut .

(Rumelhart et al., 1986)

With γ = 0, this is the same as vanilla SGD.

With γ > 0, this update has three nice properties:

• it can “go through” local barriers,

• it accelerates if the gradient does not change much:

(u = γu + ηg) ⇒
(
u =

η

1− γ
g

)
,

• it dampens oscillations in narrow valleys.

François Fleuret Deep learning / 5.2. Stochastic gradient descent 13 / 17



−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

η = 5.0e − 2, γ = 0 η = 5.0e − 2, γ = 0.5

François Fleuret Deep learning / 5.2. Stochastic gradient descent 14 / 17

Notes

We take our example of a non-isotropic quadratic
function to illustrate the difference between gra-
dient descent with and without momentum.
The left image shows the successive locations of
a standard vanilla gradient descent: there is no
momentum (γ = 0). We have oscillations in the
y direction, and it converges very slowly in the x
direction.
With a momentum of γ = 0.5,

• the oscillations in the y direction are
dampened due to the constant alternative
sign which makes the average gradient
close to 0 in that direction, and

• the moves in the x direction are larger
than before, because the gradient is rather
constant in this direction which causes
momentum to accelerate.



Another class of methods exploits the statistics over the previous steps to compensate
for the anisotropy of the mapping.

The Adam algorithm uses moving averages of each coordinate and its square to rescale
each coordinate separately.

The update rule is, on each coordinate separately

mt = β1mt−1 + (1− β1)gt

m̂t =
mt

1− βt
1

vt = β2vt−1 + (1− β2)g
2
t

v̂t =
vt

1− βt
2

wt+1 = wt −
η

√
v̂t + ϵ

m̂t

(Kingma and Ba, 2014)

This can be seen as a combination of momentum, with m̂t , and a per-coordinate
re-scaling with v̂t .

François Fleuret Deep learning / 5.2. Stochastic gradient descent 15 / 17



−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

η = 5.0e − 2

Adam,
β1 = 0.9, β2 = 0.999,

ϵ = 1e − 8, η = 1.0e − 1

François Fleuret Deep learning / 5.2. Stochastic gradient descent 16 / 17

Notes

These parameter values for Adam here are the
standard ones.



These two core strategies have been used in multiple incarnations:

• Nesterov’s accelerated gradient,

• Adagrad,

• Adadelta,

• RMSprop,

• AdaMax,

• Nadam ...

There is unfortunately no best general optimizer. Although a default choice such as
Adam with default parameter values usually gives good results, it can be beneficial to
test alternatives and optimize meta-parameters.

François Fleuret Deep learning / 5.2. Stochastic gradient descent 17 / 17



References

D. Kingma and J. Ba. Adam: A method for stochastic optimization. CoRR, abs/1412.6980, 2014.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by back-propagating
errors. Nature, 323(9):533–536, 1986.


	Limitation of the gradient descent
	Momentum and moment estimation
	References

