
Deep learning

4.4. Convolutions

François Fleuret

https://fleuret.org/dlc/

https://fleuret.org/dlc/

If they were handled as normal “unstructured” vectors, large-dimension signals
such as sound samples or images would require models of intractable size.

For instance a linear layer taking a 256× 256 RGB image as input, and
producing an image of same size would require

(256× 256× 3)2 ≃ 3.87e+10

parameters, with the corresponding memory footprint (≃150Gb !), and excess
of capacity.

François Fleuret Deep learning / 4.4. Convolutions 1 / 23

Moreover, this requirement is inconsistent with the intuition that such large
signals have some “invariance in translation”. A transformation meaningful at
a certain location can / should be used everywhere.

A convolution layer embodies this idea. It applies the same linear
transformation locally, everywhere

François Fleuret Deep learning / 4.4. Convolutions 2 / 23

Notes

Convolution preserve the structure of the signal:
if the input signal is a 2d tensor, then the output
of a convolution layer is will be 2d tensor and
there will be a clear relation between the locations
of the values in the input/output tensors.

Output

W − w + 1

1 2 0 -1

w

9

1 2 0 -1

w

0

1 2 0 -1

w

1

1 2 0 -1

w

3

1 2 0 -1

w

-5

1 2 0 -1

w

-3

1 2 0 -1

w

6

1 4 -1 0 2 -2 1 3 3 1

Input

W

Kernel

w

1 2 0 -1

François Fleuret Deep learning / 4.4. Convolutions 3 / 23

Notes

This is an illustration in 1D of how convolutions
works.
Convolving an input signal with a weight vector
also called “kernel” (filled in green here) consists
of repeating a dot product between the weight
vector and a vector of same length (in gray)
extracted from the input vector, for every position
of the weight vector while it is swiped across the
entire input signal.
As we can see on this simple example, the struc-
ture of the signal is preserved: convolving a 1D
signal with a 1D kernel produces a 1D signal.
The resulting tensor is shorter than the input to
account for the size of the weight vector. We will
see later that the input signal can be “padded”
with zeros so that the output signal is of same
size as the input.

Formally, in 1d, given
x = (x1, . . . , xW)

and a “convolution kernel” (or “filter”) of width w

u = (u1, . . . , uw)

the convolution x ⊛ u is a vector of size W − w + 1, with

(x ⊛ u)i =
w∑
j=1

xi−1+j uj

= (xi , . . . , xi+w−1) · u

for instance

(1, 2, 3, 4) ⊛ (3, 2) = (3 + 4, 6 + 6, 9 + 8) = (7, 12, 17).

!
This differs from the usual convolution since the kernel and the signal
are both visited in increasing index order.

François Fleuret Deep learning / 4.4. Convolutions 4 / 23

Convolution can implement in particular differential operators, e.g.

(0, 0, 0, 0, 1, 2, 3, 4, 4, 4, 4) ⊛ (−1, 1) = (0, 0, 0, 1, 1, 1, 1, 0, 0, 0).

⊛ =

or crude “template matcher”, e.g.

⊛ =

François Fleuret Deep learning / 4.4. Convolutions 5 / 23

Notes

The first example shows that a convolution can
computes the discrete first order derivative of the
input signal. The second that it can “detect”
a structure in a crude sense: Here the kernel
has the shape of two peaks and the response is
maximal when the dot product is done with a
similar structure in the input.
By having a way of computing derivatives and
matching pattern, we can envision the following
applications:

• detecting corners, edges in images,

• detecting amplitude modification in
sounds.

It generalizes naturally to a multi-dimensional input, although specification can become
complicated.

Its most usual form for “convolutional networks” processes a 3d tensor as input (i.e. a
multi-channel 2d signal) to output a 2d tensor. The kernel is not swiped across
channels, just across rows and columns.

In this case, if the input tensor is of size C × H ×W , and the kernel is C × h × w , the
output is (H − h + 1)× (W − w + 1).

!
We say “2d signal” even though it has C channels, since it is a feature
vector indexed by a 2d location without structure on the feature indexes.

In a standard convolution layer, D such convolutions are combined to generate a
D × (H − h + 1)× (W − w + 1) output.

François Fleuret Deep learning / 4.4. Convolutions 6 / 23

Notes

An RGB image is a multi-channel 2D signal. It
can be viewed as 3 2D signals, one for each color
red, green, and blue, and is stored by convention
in PyTorch in a tensor of shape torch.Size([3,
H, W]).

Input

Output

Kernel

Kernels

D H − h + 1

W − w + 1

1

D

H

W

C

h

w

C

François Fleuret Deep learning / 4.4. Convolutions 7 / 23

Notes

This is an illustration of how convolving a 2d
tensor works. Note that in practice, as explained
in 4.3. “PyTorch modules and batch processing”,
this is always done by batch.
In this example:

• the input is a tensor of size C × H × W ,
here with C = 3,

• the convolution layer consists of D = 2
filters of size C × h × w ,

• the output of the layer is a tensor of size
D × (H − h + 1) × (W − w + 1).

Note that the kernel is not swiped across channels:
the kernel has C channels as the input signal: it
is not the same 1 × h × w kernel applied on each
channel.

Input

Output

Affine
h

w

1

1
H

W

C

H − h + 1

W − w + 1

D

François Fleuret Deep learning / 4.4. Convolutions 8 / 23

Notes

A simpler way of envisioning the convolution is
that the output column D × 1 × 1 is an affine
function of the input block of size C × h × w in
the original input tensor. This affine mapping is
the same everywhere in the tensor.

A convolution preserves the signal support structure: a 1d signal is converted into a 1d
signal, a 2d signal into a 2d, and neighboring parts of the input signal influence
neighboring parts of the output signal.

And a convolution is equivariant to a translation of the input signal, since its output is
translated similarly.

A 3d convolution can be used if the channel index has some metric meaning, such as
time for a series of grayscale video frames. Otherwise swiping across channels makes no
sense.

François Fleuret Deep learning / 4.4. Convolutions 9 / 23

We usually refer to one of the channels generated by a convolution layer as an
activation map.

The sub-area of an input map that influences a component of the output as the
receptive field of the latter.

In the context of convolutional networks, a standard linear layer is called a fully
connected layer, or a dense layer, since every input influences every output.

François Fleuret Deep learning / 4.4. Convolutions 10 / 23

The autograd-compliant function

F.conv2d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1)

Implements a 2d convolution, where weight is of dimension D × C × h × w and
contains the kernels, bias is of dimension D, input is of dimension

N × C × H ×W

and the result is of dimension

N × D × (H − h + 1)× (W − w + 1).

>>> weight = torch.randn(5, 4, 2, 3)
>>> bias = torch.randn(5)
>>> input = torch.randn(117, 4, 10, 3)
>>> output = F.conv2d(input, weight, bias)
>>> output.size()
torch.Size([117, 5, 9, 1])

Similar functions implement 1d and 3d convolutions.

François Fleuret Deep learning / 4.4. Convolutions 11 / 23

Notes

• N is the number of samples to process by
the layer,

• C × H × W is the size of the input tensor,

• D is the number of filters in the layer,

• h × w is the size of the filters,

x = mnist_train.data[12].float().view(1, 1, 28, 28)

weight = torch.empty(5, 1, 3, 3)

weight[0, 0] = torch.tensor([[0., 0., 0.],
[0., 1., 0.],
[0., 0., 0.]])

weight[1, 0] = torch.tensor([[1., 1., 1.],
[1., 1., 1.],
[1., 1., 1.]])

weight[2, 0] = torch.tensor([[-1., 0., 1.],
[-1., 0., 1.],
[-1., 0., 1.]])

weight[3, 0] = torch.tensor([[-1., -1., -1.],
[0., 0., 0.],
[1., 1., 1.]])

weight[4, 0] = torch.tensor([[0., -1., 0.],
[-1., 4., -1.],
[0., -1., 0.]])

y = F.conv2d(x, weight)

François Fleuret Deep learning / 4.4. Convolutions 12 / 23

Notes

We define by hand five 3× 3 kernels to illustrates
the 2d convolutions on a MNIST image.
The first kernel simply copies the central value,
the second sums over the 3 × 3 area, the third
computes the difference between the sum of the
right pixels and the sum of the left ones, the
fourth does the same with top/bottom, and the
fifth computes the difference between four times
the central pixel and the sum of its neighbors.

⊛

=

⊛

=

⊛

=

⊛

=

⊛

=

François Fleuret Deep learning / 4.4. Convolutions 13 / 23

Notes

The results images are normalized and the signed
values are converted to color as follows:

• positive values are in red,

• negative values are in blue,

• white is zero.

The output tensor are two coefficients smaller
than the input since the filters are 3 × 3.
We observe that the first filter keep the image un-
changed, the second blurs it, the third and fourth
compute respectively vertical and horizontal edge
responses, and the fifth “sharpens” the image
and keeps only high frequencies.

class torch.nn.Conv2d(in_channels, out_channels,
kernel_size, stride=1, padding=0, dilation=1,
groups=1, bias=True)

Wraps the convolution into a Module, with the kernels and biases as Parameter
properly randomized at creation.

The kernel size is either a pair (h,w) or a single value k interpreted as (k, k).

>>> f = nn.Conv2d(in_channels = 4, out_channels = 5, kernel_size = (2, 3))
>>> for n, p in f.named_parameters(): print(n, p.size())
...
weight torch.Size([5, 4, 2, 3])
bias torch.Size([5])
>>> x = torch.randn(117, 4, 10, 3)
>>> y = f(x)
>>> y.size()
torch.Size([117, 5, 9, 1])

François Fleuret Deep learning / 4.4. Convolutions 14 / 23

Padding, stride, and dilation

François Fleuret Deep learning / 4.4. Convolutions 15 / 23

Convolutions have three additional parameters:

• The padding specifies the size of a zeroed frame added around the input,

• the stride specifies a step size when moving the kernel across the signal,

• the dilation modulates the expansion of the filter without adding weights.

François Fleuret Deep learning / 4.4. Convolutions 16 / 23

Here with C × 3× 5 as input, a padding of (2, 1), a stride of (2, 2), and a kernel of size
C × 3× 3, the output is 1× 3× 3.

2

1

2

2

Input

Input

2

2

2

1

Output

François Fleuret Deep learning / 4.4. Convolutions 17 / 23

Notes

The padding states how many zeroes are added
on the top, bottom, left, and right part of the
signal. Here the padding is (2, 1) hence two rows
are added at the top/bottom and one column on
the left/right. They are depicted in brown.
The stride states how coarsely the filter should
be swiped across the signal. Here it is (2, 2), and
the locations where the filter is applied, indicated
with blue dots are only even coordinates.
Finally the kernel itself is C × 3 × 3, and we do
not depict the depth C , and the 3 × 3 shape of
the filter is shown in blue.

!
A convolution with a stride greater than 1 may not cover the input map
entirely, hence may ignore some of the input values.

François Fleuret Deep learning / 4.4. Convolutions 18 / 23

Notes

On the right part of the tensor, the kernel cannot
be moved more, hence the last row and the last
column will not be taken into account. The
green area shows which part of the input signal
the output actually depends on.

The dilation modulates the expansion of the filter support by adding rows and columns
of zeros between coefficients (Yu and Koltun, 2015).

It is 1 for standard convolutions, but can be greater, in which case the resulting
operation can be envisioned as a convolution with a regularly sparsified filter.

This notion comes from signal processing, where it is referred to as algorithme à trous,
hence the term sometime used of “convolution à trous”.

François Fleuret Deep learning / 4.4. Convolutions 19 / 23

Input

Output

Dilation = 1

François Fleuret Deep learning / 4.4. Convolutions 20 / 23

Notes

A standard convolution:

• the blue pixels on the left are the locations
in the input signal where the filter has
coefficients,

• the blue pixel on the right is the output.

Input

Output

Dilation = 2

François Fleuret Deep learning / 4.4. Convolutions 21 / 23

Notes

A dilated convolution:

• the blue pixels on the left are the locations
in the input signal where the filter has
coefficients,

• the blue pixel on the right is the output.

In this case, the output is smaller than with a
standard convolution because the filter cannot
be moved as much.
The dilation is the number of zeros which are
inserted between the rows and the column of the
filter to “dilate” it.

A 1d convolution with a kernel of size k and dilation d can be interpreted as a
convolution with a filter of size 1 + (k − 1)d with only k non-zero coefficients.

For example with k = 3 and d = 4, the difference between the input map size and the
output map size is 1 + (3− 1)4− 1 = 8.

>>> x = torch.randn(1, 1, 20, 30)
>>> l = nn.Conv2d(1, 1, kernel_size = 3, dilation = 4)
>>> l(x).size()
torch.Size([1, 1, 12, 22])

François Fleuret Deep learning / 4.4. Convolutions 22 / 23

Having a dilation greater than one increases the units’ receptive field size without
increasing the number of parameters.

Convolutions with stride or dilation strictly greater than one reduce the activation
map size, for instance to make a final classification decision.

François Fleuret Deep learning / 4.4. Convolutions 23 / 23

References

F. Yu and V. Koltun. Multi-scale context aggregation by dilated convolutions. CoRR,
abs/1511.07122v3, 2015.

	Padding, stride, and dilation
	References

