
Deep learning

4.2. Autograd

François Fleuret

https://fleuret.org/dlc/

https://fleuret.org/dlc/

Conceptually, the forward pass is a standard tensor computation, and the DAG
of tensor operations is required only to compute derivatives.

When executing tensor operations, PyTorch can automatically construct
on-the-fly the graph of operations to compute the gradient of any quantity
with respect to any tensor involved.

This “autograd” mechanism (Paszke et al., 2017) has two main benefits:

• Simpler syntax: one just needs to write the forward pass as a standard
sequence of Python operations,

• greater flexibility: since the graph is not static, the forward pass can be
dynamically modulated.

François Fleuret Deep learning / 4.2. Autograd 1 / 20

A Tensor has a Boolean field requires_grad, set to False by default, which
states if PyTorch should build the graph of operations so that gradients with
respect to it can be computed.

The result of a tensorial operation has this flag to True if any of its operand
has it to True.

>>> x = torch.tensor([1., 2.])
>>> y = torch.tensor([4., 5.])
>>> z = torch.tensor([7., 3.])
>>> x.requires_grad
False
>>> (x + y).requires_grad
False
>>> z.requires_grad = True
>>> (x + z).requires_grad
True

François Fleuret Deep learning / 4.2. Autograd 2 / 20

! Only floating point type tensors can have their gradient computed.

>>> x = torch.tensor([1., 10.])
>>> x.requires_grad = True
>>> x = torch.tensor([1, 10])
>>> x.requires_grad = True
Traceback (most recent call last):
/.../
RuntimeError: only Tensors of floating point dtype can require gradients

The method requires_grad_(value = True) set requires_grad to value,
which is True by default.

François Fleuret Deep learning / 4.2. Autograd 3 / 20

torch.autograd.grad(outputs, inputs) computes and returns the gradient
of outputs with respect to inputs.

>>> t = torch.tensor([1., 2., 4.]).requires_grad_()
>>> u = torch.tensor([10., 20.]).requires_grad_()
>>> a = t.pow(2).sum() + u.log().sum()
>>> torch.autograd.grad(a, (t, u))
(tensor([2., 4., 8.]), tensor([0.1000, 0.0500]))

inputs can be a single tensor, but the result is still a [one element] tuple.

If outputs is a tuple, the result is the sum of the gradients of its elements.

François Fleuret Deep learning / 4.2. Autograd 4 / 20

Notes

We have

a(t, u) =
∑
i

t2i +
∑
i

log ui

and we have

∀i,
∂a

∂ti
= 2ti

∂a

∂ui
=

1

ui

which is what is returned by
torch.autograd.grad(a, (t, u)).

The function Tensor.backward() accumulates gradients in the grad fields of tensors
which are not results of operations, the “leaves” in the autograd graph.

>>> x = torch.tensor([-3., 2., 5.]).requires_grad_()
>>> u = x.pow(3).sum()
>>> x.grad
>>> u.backward()
>>> x.grad
tensor([27., 12., 75.])

This function is an alternative to torch.autograd.grad(...) and standard for
training models.

François Fleuret Deep learning / 4.2. Autograd 5 / 20

Notes

Tensor.grad() is useful in context of deep-
learning where the main use is gradient descent,
because we need to subtract the gradient of a
tensor to the tensor itself.
To do so with autograd.grad(), we would have
to associate every gradient to its tensor.

!
Tensor.backward() accumulates the gradients in the grad fields of
tensors, so one may have to set them to zero before calling it.

This accumulating behavior is desirable in particular to compute the gradient of a loss
summed over several “mini-batches,” or the gradient of a sum of losses.

François Fleuret Deep learning / 4.2. Autograd 6 / 20

So we can run a forward/backward pass on

x(0) = x

x(1)ϕ(1)

x(2)ϕ(2)

f (x) = x(3)ϕ(3)

w(1)

w(2)

ϕ(1)
(
x(0);w (1)

)
= w (1)x(0)

ϕ(2)
(
x(0), x(1);w (2)

)
= x(0) + w (2)x(1)

ϕ(3)
(
x(1), x(2);w (1)

)
= w (1)

(
x(1) + x(2)

)

w1 = torch.rand(5, 5).requires_grad_()
w2 = torch.rand(5, 5).requires_grad_()
x = torch.randn(5)

x0 = x
x1 = w1 @ x0
x2 = x0 + w2 @ x1
x3 = w1 @ (x1 + x2)

q = x3.norm()

q.backward()

François Fleuret Deep learning / 4.2. Autograd 7 / 20

Notes

The difference between Tensorflow (as we saw in
lecture 4.1. “DAG networks”) and PyTorch here
is that variable q actually contains the result of
the computation.
During the tensor operations, PyTorch built all
the necessary operations to compute the gradient
if needed.
When calling q.backward(), PyTorch actually
runs this built graph to fill the grad fields of the
parameters.

The autograd machinery

François Fleuret Deep learning / 4.2. Autograd 8 / 20

The autograd graph is encoded through the fields grad_fn of Tensors, and the fields
next_functions of Functions.

>>> x = torch.tensor([1.0, -2.0, 3.0, -4.0]).requires_grad_()
>>> a = x.abs()
>>> s = a.sum()
>>> s
tensor(10., grad_fn=<SumBackward0>)
>>> s.grad_fn.next_functions
((<AbsBackward object at 0x7ffb2b1462b0>, 0),)
>>> s.grad_fn.next_functions[0][0].next_functions
((<AccumulateGrad object at 0x7ffb2b146278>, 0),)

We will come back to this later to write our own Functions.

François Fleuret Deep learning / 4.2. Autograd 9 / 20

We can visualize the full graph built during a computation.

x = torch.tensor([1., 2., 2.]).requires_grad_()
q = x.norm()

q []

NormBackward0

AccumulateGrad

x [3]

This graph was generated with

https://fleuret.org/git/agtree2dot

and Graphviz.

François Fleuret Deep learning / 4.2. Autograd 10 / 20

Notes

The graphs depicted here and in the coming slides
show the computational graph built automatically
by autograd to allow the computation of the
gradient of the final value w.r.t. the initial values.
AccumulateGrad is a particular operator that
adds the values it gets if the grad fields. All
the other blocks correspond directly to a tensor
operation.

https://fleuret.org/git/agtree2dot

w1 = torch.rand(20, 10).requires_grad_()
b1 = torch.rand(20).requires_grad_()
w2 = torch.rand(5, 20).requires_grad_()
b2 = torch.rand(5).requires_grad_()

x = torch.rand(10)
h = torch.tanh(w1 @ x + b1)
y = torch.tanh(w2 @ h + b2)

targets = torch.rand(5)

loss = (y - targets).pow(2).mean()

loss []

MeanBackward0

PowBackward0

SubBackward0

TanhBackward

AddBackward0

0 1

MvBackward

0 1
AccumulateGrad

AccumulateGrad TanhBackward

w2 [5, 20]
AddBackward0

0 1

MvBackward AccumulateGrad

AccumulateGrad

w1 [20, 10]

b1 [20]

b2 [5]

François Fleuret Deep learning / 4.2. Autograd 11 / 20

Notes

This is an implementation of a one hidden layer
MLP with the tanh activation function.
Note that the block SubBackward0 corresponds
to y - target and gets a single output since
we do no compute derivatives w.r.t. its second
operand target.

w = torch.rand(3, 10, 10).requires_grad_()

def blah(k, x):
for i in range(k):

x = torch.tanh(w[i] @ x)
return x

u = blah(1, torch.rand(10))
v = blah(3, torch.rand(10))
q = u.dot(v)

q []

DotBackward

0 1

TanhBackward TanhBackward

MvBackward

SelectBackward

AccumulateGrad

w [3, 10, 10]

MvBackward

0 1

SelectBackward

TanhBackward

MvBackward

0 1

SelectBackward

TanhBackward

MvBackward

SelectBackward

François Fleuret Deep learning / 4.2. Autograd 12 / 20

Notes

This example is more complicated and illustrates
the flexibility of autograd.
Function blah applies a series of k matrix-
vector operations and sigmoid, as specified by
its operand k.
The left branch of the graph corresponds to the
gradient computation of u with k=1, while the
right part is the computation for v with k=3.
They all end up accumulating in the same tensor
since it contains all the matrices appearing in the
computation.

!
Although they are related, the autograd graph is not the network’s
structure, but the graph of operations to compute the gradient. It can
be data-dependent and miss or replicate sub-parts of the network.

François Fleuret Deep learning / 4.2. Autograd 13 / 20

The torch.no_grad() context switches off the autograd machinery, and can be used
for operations such as parameter updates.

w = torch.empty(10, 784).normal_(0, 1e-3).requires_grad_()
b = torch.empty(10).normal_(0, 1e-3).requires_grad_()

for k in range(10001):
y_hat = x @ w.t() + b
loss = (y_hat - y).pow(2).mean()

w.grad, b.grad = None, None
loss.backward()

with torch.no_grad():
w -= eta * w.grad
b -= eta * b.grad

François Fleuret Deep learning / 4.2. Autograd 14 / 20

The detach() method creates a tensor which shares the data, but does not require
gradient computation, and is not connected to the current graph.

This method should be used when the gradient should not be propagated beyond a
variable, or to update leaf tensors.

François Fleuret Deep learning / 4.2. Autograd 15 / 20

a = torch.tensor(0.5).requires_grad_()
b = torch.tensor(-0.5).requires_grad_()

for k in range(100):
l = (a - 1)**2 + (b + 1)**2 + (a - b)**2
ga, gb = torch.autograd.grad(l, (a, b))
with torch.no_grad():

a -= eta * ga
b -= eta * gb

print(a, b)

prints

tensor(0.3333, requires_grad=True) tensor(-0.3333, requires_grad=True)

François Fleuret Deep learning / 4.2. Autograd 16 / 20

Notes

The loss to minimize here is:

𝓁(a, b) = (a − 1)2 + (b + 1)2 + (a − b)2

which leads to

∇𝓁(a, b) =
[
4a − 2b − 2
−2a + 4b + 2

]
So solving ∇𝓁(a, b) = 0 yields indeed a = 1

3

and b = − 1
3 .

a = torch.tensor(0.5).requires_grad_()
b = torch.tensor(-0.5).requires_grad_()

for k in range(100):
l = (a - 1)**2 + (b + 1)**2 + (a.detach() - b)**2
ga, gb = torch.autograd.grad(l, (a, b))
with torch.no_grad():

a -= eta * ga
b -= eta * gb

print(a, b)

prints

tensor(1.0000, requires_grad=True) tensor(-8.2480e-08, requires_grad=True)

François Fleuret Deep learning / 4.2. Autograd 17 / 20

Notes

Now, although the loss is the same, the
a.detach() should be understood as having the
same value as a but having a derivative w.r.t. a
equal to zero.
Consequently the optimization finds the solution
of: [

2a − 2
−2a + 4b + 2

]
= 0

By default, autograd deletes the computational graph when it is used.

>>> x = torch.tensor([1.]).requires_grad_()
>>> z = 1/x
>>> torch.autograd.grad(z, x)
(tensor([-1.]),)
>>> torch.autograd.grad(z * z, x)
Traceback (most recent call last):
/.../
RuntimeError: Trying to backward through the graph a second time, but
the buffers have already been freed.

The flag retain_graph indicates to keep it.

>>> x = torch.tensor([1.]).requires_grad_()
>>> z = 1/x
>>> torch.autograd.grad(z, x, retain_graph = True)
(tensor([-1.]),)
>>> torch.autograd.grad(z * z, x)
(tensor([-2.]),)

François Fleuret Deep learning / 4.2. Autograd 18 / 20

Autograd can also track the computation of the gradient itself, to allow higher-order
derivatives. This is specified with create_graph = True.

ψ(x1, x2) = log(x1) + x22

∥∇ψ∥22 =

(
1

x1

)2

+ (2x2)
2

∇∥∇ψ∥22 =

(
−

2

x31
, 8x2

)

>>> x = torch.tensor([2., 3.]).requires_grad_()
>>> psi = x[0].log() + x[1].pow(2)
>>> g, = torch.autograd.grad(psi, x, create_graph = True)
>>> torch.autograd.grad(g.pow(2).sum(), x)
(tensor([-0.2500, 24.0000]),)

François Fleuret Deep learning / 4.2. Autograd 19 / 20

!
In-place operations may corrupt values required to compute the gradient,
and this is tracked down by autograd.

>>> x = torch.tensor([1., 2., 3.]).requires_grad_()
>>> y = x.sin()
>>> y *= y
>>> l = y.sum()
>>> l.backward()
Traceback (most recent call last):
/.../
RuntimeError: one of the variables needed for gradient computation
has been modified by an inplace operation

They are also prohibited on so-called “leaf” tensors, which are not the results of
operations but the initial inputs to the whole computation.

François Fleuret Deep learning / 4.2. Autograd 20 / 20

References

A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison, L. Antiga,
and A. Lerer. Automatic differentiation in PyTorch. In Proceedings of the NIPS Autodiff
workshop, 2017.

	The autograd machinery
	References

