
Deep learning

3.1. The perceptron

François Fleuret

https://fleuret.org/dlc/

https://fleuret.org/dlc/


The first mathematical model for a neuron was the Threshold Logic Unit, with
Boolean inputs and outputs:

f (x) = 1{w ∑
i xi+b≥0}.

It can in particular implement

or(u, v) = 1{u+v−0.5≥0} (w = 1, b = −0.5)

and(u, v) = 1{u+v−1.5≥0} (w = 1, b = −1.5)

not(u) = 1{−u+0.5≥0} (w = −1, b = 0.5)

Hence, any Boolean function can be build with such units.

(McCulloch and Pitts, 1943)

François Fleuret Deep learning / 3.1. The perceptron 1 / 15



The perceptron is very similar

f (x) =

 1 if
∑
i

wi xi + b ≥ 0

0 otherwise

but the inputs are real valued and weights can be different (Rosenblatt, 1957).

It was originally motivated by biology, with wi being the synaptic weights, and
xi and f firing rates. However, it is a (very) crude biological model.

François Fleuret Deep learning / 3.1. The perceptron 2 / 15

Notes

The perceptron extends the Threshold Logic Unit
by to real-numbered inputs, and apply a different
multiplicative weight to each.
This results in an affine expression

∑
i wi xi +b =

0, that defines an hyperplane, and the percep-
tron splits the input space in two subspaces, and
responds 1 on one side of that hyperplane, and
0 on the other side.
Although this model was motivated by biology,
it is an extremely crude model and does not
reflect the complexity of real neurons which are
a very complex machinery with a lot of chemical
processing going on.



To make things simpler we take responses ±1. Let

σ(x) =

{
1 if x ≥ 0

−1 otherwise.

−1

1

The perceptron classification rule boils down to

f (x) = σ(w · x + b).

For neural networks, the function σ that follows a linear operator is called the
activation function.

François Fleuret Deep learning / 3.1. The perceptron 3 / 15



We can represent this “neuron” as follows:

Value

Parameter

Operation

x2

x1

x3

×

×

×

w1

w2

w3

Σ

b

σ y

François Fleuret Deep learning / 3.1. The perceptron 4 / 15

Notes

On this graph,

• (x1, x2, x3) is the input to the neuron,

• (w1,w2,w3) are its weights and b its bias,

• each × block computes a product, Σ a
sum, and σ the non-linear activation
function, resulting in the value y , which is
the neuron’s output.

As we will see, the neuron’s parameters
w1,w2,w3, b are the quantities optimized dur-
ing training.



We can also use tensor operations, as in

f (x) = σ(w · x + b).

x ·

w

+

b

σ y

François Fleuret Deep learning / 3.1. The perceptron 5 / 15

Notes

By analogy with the previous slides, we have:

• x = (x1, x2, x3),

• w = (w1,w2,w3),

• b ∈ R (as before)



Given a training set

(xn, yn) ∈ RD × {−1, 1}, n = 1, . . . ,N,

a very simple scheme to train such a linear operator for classification is the perceptron
algorithm:

1. Start with w0 = 0,

2. while ∃nk s.t. ynk
(
wk · xnk

)
≤ 0, update wk+1 = wk + ynk xnk .

The bias b can be introduced as one of the ws by adding a constant component to x
equal to 1.

François Fleuret Deep learning / 3.1. The perceptron 6 / 15

Notes

To get an intuition of why the perceptron algo-
rithm works, let’s consider a misclassified sample
xn with label 1: we have yn(w · xn) ≤ 0. As
long as this sample is misclassified, the weight
vector gets updated by adding xn, which by lin-
earity adds xn · xn = ∥xn∥2 to the perceptron’s
response on xn each time, which will be positive
eventually.
For simplicity, the bias value can be introduced
inside the weight vector:∑
i

wixi + b = [w1, . . . ,wD , b] · [x1, . . . , xD , 1]



def train_perceptron(x, y, nb_epochs_max):
w = torch.zeros(x.size(1))

for e in range(nb_epochs_max):
nb_changes = 0
for i in range(x.size(0)):

if x[i].dot(w) * y[i] <= 0:
w = w + y[i] * x[i]
nb_changes = nb_changes + 1

if nb_changes == 0: break;

return w

François Fleuret Deep learning / 3.1. The perceptron 7 / 15

Notes

In the implementation, we have an argument to
specify the maximum number of times where we
loop through all the samples. It may happen
that the algorithm never converges, in particular
when there are no solution that separate properly
the two populations, so we force the function to
terminate before convergence.



This crude algorithm works often surprisingly well. With MNIST’s “0”s as negative
class, and “1”s as positive one.

epoch 0 nb_changes 64 train_error 0.23% test_error 0.19%

epoch 1 nb_changes 24 train_error 0.07% test_error 0.00%

epoch 2 nb_changes 10 train_error 0.06% test_error 0.05%

epoch 3 nb_changes 6 train_error 0.03% test_error 0.14%

epoch 4 nb_changes 5 train_error 0.03% test_error 0.09%

epoch 5 nb_changes 4 train_error 0.02% test_error 0.14%

epoch 6 nb_changes 3 train_error 0.01% test_error 0.14%

epoch 7 nb_changes 2 train_error 0.00% test_error 0.14%

epoch 8 nb_changes 0 train_error 0.00% test_error 0.14%

François Fleuret Deep learning / 3.1. The perceptron 8 / 15

Notes

We can apply the perceptron algorithm to a sim-
ple computer vision classification problem, using
the classes “0” and “1” from the MNIST data-
set.
MNIST is a collection of 28 × 28 gray scale im-
ages. They can be “unfolded” into a 1d vector,
by concatenating all the rows into one single vec-
tor of dimension 784.
The learned weight vector w can also be inter-
preted by reshaping it into an image of size
28 × 28. Since the weight vector has positive
and negative values, we represent it with shades
of blue for negative values, and shades of red for
positive ones. The stronger the color, the larger
the absolute value, white for zero.
Since the model here is linear, the 2d-reshaped

vector w can be seen as a template that is applied
on the input image: the dot product will sum
the weights on the black pixel of the input image,
and ignore the others. And indeed:

• the template has more positive weights in
the center where the images of “1” have
black pixels and not those of “0”,

• the template has more negative weights on
the left and right of the center, where
images of “0” have black pixels but not
those of “1”.

Note that we reach a training error of 0%, mean-
ing here that images of “0” and “1” of MNIST
can be separated with an hyperplane.



We can get a convergence result under two assumptions:

γ

w∗

R

·

1. The xn are in a sphere of radius R:

∃R > 0, ∀n, ∥xn∥ ≤ R.

2. The two populations can be separated with a margin γ:

∃w∗, ∥w∗∥ = 1, ∃γ > 0, ∀n, yn (xn · w∗) ≥ γ/2.

François Fleuret Deep learning / 3.1. The perceptron 9 / 15



To prove the convergence, let us make the assumption that there still is a misclassified
sample at iteration k.

We have

wk+1 · w∗ =
(
wk + ynk xnk

)
· w∗

= wk · w∗ + ynk (xnk · w∗)

≥ wk · w∗ + γ/2

≥ (k + 1) γ/2.

Since
∥wk∥∥w∗∥ ≥ wk · w∗,

we get

∥wk∥2 ≥
(
wk · w∗

)2
/∥w∗∥2

≥ k2γ2/4.

François Fleuret Deep learning / 3.1. The perceptron 10 / 15



And

∥wk+1∥2 = wk+1 · wk+1

=
(
wk + ynk xnk

)
·
(
wk + ynk xnk

)
= wk · wk + 2 ynk w

k · xnk︸ ︷︷ ︸
≤0

+ ∥xnk ∥
2︸ ︷︷ ︸

≤R2

≤ ∥wk∥2 + R2

≤ (k + 1)R2.

François Fleuret Deep learning / 3.1. The perceptron 11 / 15

Notes

When a sample xnk is misclassified, by definition,

we have ynk wk · xnk ≤ 0.
With assumption 1 from previous slides, the
samples are contained in a ball of radius R, so
∥xnk ∥

2 ≤ R2.



Putting these two results together, we get

k2γ2/4 ≤ ∥wk∥2 ≤ k R2

hence
k ≤ 4R2/γ2,

hence no misclassified sample can remain after
⌊
4R2/γ2

⌋
iterations.

This result makes sense:

• The bound does not change if the population is scaled, and

• the larger the margin, the more quickly the algorithm classifies all the samples
correctly.

François Fleuret Deep learning / 3.1. The perceptron 12 / 15



The perceptron stops as soon as it finds a separating boundary. Other algorithms
maximize the distance of samples to the decision boundary, which improves robustness
to noise.

Support Vector Machines (SVM) achieve this by minimizing

ℒ (w , b) = λ∥w∥2 +
1

N

∑
n

max(0, 1− yn(w · xn + b)),

which is convex and has a global optimum.

François Fleuret Deep learning / 3.1. The perceptron 13 / 15



ℒ (w , b) = λ∥w∥2 +
1

N

∑
n

max(0, 1− yn(w · xn + b))

2
∥w∥

Support vectors

Minimizing max(0, 1− yn(w · xn + b)) pushes the nth sample beyond the plane
w · x + b = yn, and minimizing ∥w∥2 increases the distance between the w · x + b = ±1.

At convergence, only a small number of samples matter, the “support vectors”.

François Fleuret Deep learning / 3.1. The perceptron 14 / 15

Notes

The boundary is only defined by support vectors,
the points which actually matter to characterize
the boundary between the two populations.



The term
max(0, 1− α)

is the so called “hinge loss”

François Fleuret Deep learning / 3.1. The perceptron 15 / 15



References

W. S. McCulloch and W. Pitts. A logical calculus of the ideas immanent in nervous activity. The
bulletin of mathematical biophysics, 5(4):115–133, 1943.

F. Rosenblatt. The perceptron–A perceiving and recognizing automaton. Technical Report
85-460-1, Cornell Aeronautical Laboratory, 1957.


	References

