
Deep learning

1.5. High dimension tensors

François Fleuret

https://fleuret.org/dlc/

https://fleuret.org/dlc/

A tensor can be of several types:

• torch.float16, torch.float32, torch.float64,

• torch.uint8,

• torch.int8, torch.int16, torch.int32, torch.int64

and can be located either in the CPU’s or in a GPU’s memory.

Operations with tensors stored in a certain device’s memory are done by that
device. We will come back to that later.

François Fleuret Deep learning / 1.5. High dimension tensors 1 / 20

Notes

All the coefficients in a given tensor are of the
same type, which can be either an integer or
floating point value of a certain precision.

>>> x = torch.zeros(1, 3)
>>> x.dtype, x.device
(torch.float32, device(type='cpu'))
>>> x = x.long()
>>> x.dtype, x.device
(torch.int64, device(type='cpu'))
>>> x = x.to('cuda')
>>> x.dtype, x.device
(torch.int64, device(type='cuda', index=0))

François Fleuret Deep learning / 1.5. High dimension tensors 2 / 20

Notes

The default type of tensor values is
torch.float32, and the default comput-
ing device is the CPU.
The data type of the tensor can be accessed with
dtype and the device on which the tensor lies
with device.
When casting a tensor to a new type (for in-
stance here with x = x.long()), a copy is ac-
tually made. If the type is already adequate, a
reference to the same tensor is returned.
It is a best practice to define the device that is
going to be used once for all at the beginning of
a program, and use the method to(device) to
move the data to the target device.

2d tensor (e.g. grayscale image)

[•, ·]

[·, •]

3d tensor (e.g. rgb image)

[·, •, ·]

[·, ·, •]

[•, ·, ·]

4d tensor (e.g. sequence of rgb images)

[•, ·, ·, ·]

. . .[·, ·, •, ·]

[·, ·, ·, •]

[·, •, ·, ·]

François Fleuret Deep learning / 1.5. High dimension tensors 3 / 20

Notes

In these figures, the • marker denotes the index
of the dimension corresponding to the drawn axis,
and · denotes the other dimensions.
A 2d tensor can be seen as a grayscale image:
the first index is the row, and the second index
the column.
A 3d tensor can be viewed as a RGB image. The
standard in PyTorch is to have the channel index
first. For instance, a CIFAR10 image is of size
3 × 32 × 32.
A 4d tensor can be seen as a sequence of multi-
channel images. For instance, given a mini-
batch batch of 10 CIFAR10 images is of size
10 × 3 × 32 × 32,

• the 5th image can be accessed as
batch[4];

• the blue channel (3rd) of the 7th image
can be accessed with batch[6, 2] or
batch[6, 2, :, :].

Here are a few examples from the immense library of tensor operations:

Creation
• torch.empty(*size, ...)

• torch.zeros(*size, ...)

• torch.full(size, value, ...)

• torch.tensor(sequence, ...)

• torch.eye(n, ...)

• torch.from_numpy(ndarray)

Indexing, Slicing, Joining, Mutating
• torch.Tensor.view(*size)

• torch.cat(inputs, dimension=0)

• torch.chunk(tensor, nb_chunks, dim=0)[source]

• torch.split(tensor, split_size, dim=0)[source]

• torch.index_select(input, dim, index, out=None)

• torch.t(input, out=None)

• torch.transpose(input, dim0, dim1, out=None)

Filling
• Tensor.fill_(value)

• torch.bernoulli_(proba)

• torch.normal_([mu, [std]])

François Fleuret Deep learning / 1.5. High dimension tensors 4 / 20

Pointwise math
• torch.abs(input, out=None)

• torch.add()

• torch.cos(input, out=None)

• torch.sigmoid(input, out=None)

Math reduction
• torch.dist(input, other, p=2, out=None)

• torch.mean()

• torch.norm()

• torch.std()

• torch.sum()

BLAS and LAPACK Operations
• torch.linalg(a)

• torch.linalg(A, B)

• torch.inverse(input, out=None)

• torch.mm(mat1, mat2, out=None)

• torch.mv(mat, vec, out=None)

François Fleuret Deep learning / 1.5. High dimension tensors 5 / 20

x = torch.tensor([[1, 3, 0],
[2, 4, 6]]) x.t()

x.view(-1)

x.view(3, -1)

x[:, 1:3]
x.view(1, 2, 3).expand(3, 2, 3)

François Fleuret Deep learning / 1.5. High dimension tensors 6 / 20

Notes

t() can be applied to a 2d tensor and simply
transpose the indices, as a classical matrix trans-
pose.
view() unfolds the tensor in a different shape.
Using -1 for one of the dimension computes the
proper value to match the number of coefficients
with the original tensor.
Here, x.view(1, 2, 3).expand(3,
2, 3) can also be achieved with
x.unsqueeze(0).expand(3, 2, 3).
unsqueeze adds a dimension of size 1 at
the specified position.

x = torch.tensor([[[1, 2, 1],
[2, 1, 2]],

[[3, 0, 3],
[0, 3, 0]]])

x[0:1, :, :]

x[:, :, 0:2]
x.transpose(0, 1)

x.transpose(0, 2)
x.transpose(1, 2)

François Fleuret Deep learning / 1.5. High dimension tensors 7 / 20

Notes

Transposing two dimensions of a tensor can also
be done by specifying the two dimensions as in-
put: transpose(dim0, dim1). This is of course
applicable to tensors of greater than two dimen-
sions.

!
For efficiency reasons, different tensors can share the same data and
modifying one will modify the others. By default do not make the
assumption that two tensors refer to different data in memory.

>>> a = torch.full((2, 3), 1)
>>> a
tensor([[1, 1, 1],

[1, 1, 1]])
>>> b = a.view(-1)
>>> b
tensor([1, 1, 1, 1, 1, 1])
>>> a[1, 1] = 2
>>> a
tensor([[1, 1, 1],

[1, 2, 1]])
>>> b
tensor([1, 1, 1, 1, 2, 1])
>>> b[0] = 9
>>> a
tensor([[9, 1, 1],

[1, 2, 1]])
>>> b
tensor([9, 1, 1, 1, 2, 1])

François Fleuret Deep learning / 1.5. High dimension tensors 8 / 20

Notes

Note that many operations returns a new tensor
which shares the same underlying storage as the
original tensor, so changing the values of one
will change the other as well: view, transpose,
squeeze, unsqueeze, expand, permute, etc.
We will come back later to the underlying repre-
sentation of a tensor that allows that.

PyTorch offers simple interfaces to standard image databases.

import torch, torchvision
cifar = torchvision.datasets.CIFAR10('./cifar10/', train = True, download = True)
x = torch.from_numpy(cifar.data).permute(0, 3, 1, 2).float() / 255
print(x.dtype, x.size(), x.min().item(), x.max().item())

prints

Files already downloaded and verified
torch.float32 torch.Size([50000, 3, 32, 32]) 0.0 1.0

[50, 000, ·, ·, ·]

. . .[·, ·, 32, ·]

[·, ·, ·, 32]

[·, 3, ·, ·]

François Fleuret Deep learning / 1.5. High dimension tensors 9 / 20

Notes

Note that there are different storage conventions
between some libraries used by PyTorch (pillow
and NumPy) and PyTorch itself:

• loading the images yields a tensor of shape
50000 × 32 × 32 × 3, but

• PyTorch works with the channel dimension
as the second one: 50000 × 3 × 32 × 32.

This change is made with permute(0, 3, 1, 2)
which means that we want dimension 3 of the
original tensor to lie at the second position of the
new tensor.
In the original tensor, accessing pixel (5, 9) of the
first image cifar.data[0, 5, 9] returns [122

82 44], because the last dimension is the num-
ber of channels.
Once the permutation is done, x[n, 0, :, :]
allows to access the red channel of image n.
If we don’t put float()/255, then we can have:

• x[0, 0, 5, 9] returns tensor(122,
dtype=torch.uint8)

• x[0, 1, 5, 9] returns tensor(82,
dtype=torch.uint8)

• x[0, 2, 5, 9] returns tensor(44,
dtype=torch.uint8)

Narrows to the first images, converts to float
x = x[:48]

Saves these samples as a single image
torchvision.utils.save_image(x, 'cifar-4x12.png',

nrow = 12, pad_value = 1.0)

François Fleuret Deep learning / 1.5. High dimension tensors 10 / 20

Notes

x[:48] returns the first 48 images.

Switches the row and column indexes
x.transpose_(2, 3)
torchvision.utils.save_image(x, 'cifar-4x12-rotated.png',

nrow = 12, pad_value = 1.0)

François Fleuret Deep learning / 1.5. High dimension tensors 11 / 20

Notes

Since the data follows the standard PyTorch
“channel first” convention, transposing dimen-
sions 2 and 3 (that is the 3rd and the fourth)
exchanges the height and width of the images.
Remember that functions ending with an under-
score operate in-place.

Kills the green and blue channels
x[:, 1:3].fill_(0)
torchvision.utils.save_image(x, 'cifar-4x12-rotated-and-red.png',

nrow = 12, pad_value = 1.0)

François Fleuret Deep learning / 1.5. High dimension tensors 12 / 20

Notes

Here, we set all the values of the green and blue
channels to zero (channels 1 and 2 respectively).

Broadcasting and Einstein summations

François Fleuret Deep learning / 1.5. High dimension tensors 13 / 20

Broadcasting automagically expands dimensions by replicating coefficients, when it is
necessary to perform operations that are “intuitively reasonable”.

For instance:

>>> x = torch.empty(100, 4).normal_(2)
>>> x.mean(0)
tensor([2.0476, 2.0133, 1.9109, 1.8588])
>>> x -= x.mean(0) # This should not work, but it does!
>>> x.mean(0)
tensor([-4.0531e-08, -4.4703e-07, -1.3471e-07, 3.5763e-09])

François Fleuret Deep learning / 1.5. High dimension tensors 14 / 20

Notes

Broadcasting is a mechanism taken from NumPy
which expands the proper dimensions of size 1 to
perform operations on tensors/arrays of different
dimensions.
In the example above, considering that a N × D
tensor is a list of N vectors of dimension D, we
want to compute the mean vector. So, here,
starting from a tensor of dimension (100, 4),
the mean along dimension 0 yields a tensor with
4 values of size (4,), one for each column.
It is quite natural to substract a vector to a series
of vectors. For instance here, it seems reasonable
to subtract the mean vector to all the vectors of
x, but since the dimensions are respectively (4,)
and (100, 4), the operation cannot be done.
To allow it, the “broadcasting” mechanism cre-
ates [implicitely] a matrix of size (100, 4) by
replicating the row 100 times.

Precisely, broadcasting proceeds as follows:

1. If one of the tensors has fewer dimensions than the other, it is reshaped by adding
as many dimensions of size 1 as necessary in the front; then

2. for every dimension mismatch, if one of the two tensors is of size one, it is
expanded along this axis by replicating coefficients.

If there is a tensor size mismatch for one of the dimension and neither of them is one,
the operation fails.

François Fleuret Deep learning / 1.5. High dimension tensors 15 / 20

A = torch.tensor([[1.], [2.], [3.], [4.]])
B = torch.tensor([[5., -5., 5., -5., 5.]])
C = A + B

Broadcasted

4

3

2

1

A

5 −5 5 −5 5

B

4 4 4 4 4

replicate

3 3 3 3 3

replicate

2 2 2 2 2

replicate

1 1 1 1 1

replicate

5 −5 5 −5 5

re
p
li
ca
te

5 −5 5 −5 5

re
p
li
ca
te 5 −5 5 −5 5

re
p
li
ca
te

5 −5 5 −5 5

re
p
li
ca
te

9 −1 9 −1 9

8 −2 8 −2 8

7 −3 7 −3 7

6 −4 6 −4 6

C = A+ B

François Fleuret Deep learning / 1.5. High dimension tensors 16 / 20

Notes

In the example,

• A is of size (4,1)

• B is of size (1,5)

Following the procedure of the previous slide,

1. Both tensors have two dimensions;

2. Then, for each of the two dimensions:

– On dimension 0, A has 4 rows, while
B has 1. Therefore, B is expanded
along this dimension by replicating
its row 4 times. The “new” B is of
size (4,5).

– On dimension 1, A has 1 column,
while B has 5. Therefore, A is
expanded along this dimension by
replicating its column 5 times. The
“new” A is of size (4,5).

– The operation can be perform on
these two tensors of size (4,5).

Note that all this is transparent and that no copy
is actually made.

A powerful generic tool for complex tensorial operations is the Einstein summation
convention. It provides a concise way of describing dimension re-ordering and summing
of component-wise products along some of them.

torch.einsum takes as argument a string describing the operation, the tensors to
operate on, and returns a tensor.

The operation string is a comma-separated list of indexing, followed by the indexing for
the result.

Summations are executed on all indexes not appearing in the result indexing.

François Fleuret Deep learning / 1.5. High dimension tensors 17 / 20

For instance, we can formulate that way the standard matrix product:

RA×B × RB×C → RA×C

∀i , k, mi,k =
∑
j

pi,jqj,k

m = torch.einsum('ij,jk->ik', p, q)

The summation is done along j since it does not appear after the ->.

>>> p = torch.rand(2, 5)
>>> q = torch.rand(5, 4)
>>> torch.einsum('ij,jk->ik', p, q)
tensor([[2.0833, 1.1046, 1.5220, 0.4405],

[2.1338, 1.2601, 1.4226, 0.8641]])
>>> p@q
tensor([[2.0833, 1.1046, 1.5220, 0.4405],

[2.1338, 1.2601, 1.4226, 0.8641]])

François Fleuret Deep learning / 1.5. High dimension tensors 18 / 20

Matrix-vector product:

RA×B × RB → RA

∀i , k, wi =
∑
j

mi,jvj

w = torch.einsum('ij,j->i', m, v)

Hadamard (component-wise) product:

RA×B × RA×B → RA×B

∀i , j , mi,j = pi,jqi,j

m = torch.einsum('ij,ij->ij', p, q)

Extracting the diagonal:

RD×D → RD

∀i , k, vi = mi,i

v = torch.einsum('ii->i', m)

François Fleuret Deep learning / 1.5. High dimension tensors 19 / 20

Batch matrix product:

RN×A×B × RN×B×C → RN×A×C

∀n, i , k, mn,i,k =
∑
j

pn,i,jqn,j,k

m = torch.einsum('nij,njk->nik', p, q)

Batch trace:

RN×D×D → RN

∀n, tn =
∑
i

mn,i,i

t = torch.einsum('nii->n', m)

Tri-linear product along a channel:

RN×C×T × RN×C×T × RN×C×T → RN×T

∀n, t, mn,t =
∑
c

pn,c,tqn,c,t rn,c,t

m = torch.einsum('nct,nct,nct->nt', p, q, r)

François Fleuret Deep learning / 1.5. High dimension tensors 20 / 20

	Broadcasting and Einstein summations

