
Deep learning

1.4. Tensor basics and linear regression

François Fleuret

https://fleuret.org/dlc/

https://fleuret.org/dlc/

A tensor is a generalized matrix, a finite table of numerical values indexed along
several discrete dimensions.

• A 0d tensor is a scalar,

• A 1d tensor is a vector (e.g. a sound sample),

• A 2d tensor is a matrix (e.g. a grayscale image),

• A 3d tensor can be seen as a vector of identically sized matrix (e.g. a
multi-channel image),

• A 4d tensor can be seen as a matrix of identically sized matrices, or a
sequence of 3d tensors (e.g. a sequence of multi-channel images),

• etc.

Tensors are used to encode the signal to process, but also the internal states
and parameters of models. Compounded data structures can represent more
diverse data types.

Manipulating data through this constrained structure allows to use CPUs and
GPUs at [near] peak performance.

François Fleuret Deep learning / 1.4. Tensor basics and linear regression 1 / 13

Notes

An RGB image of H rows and W columns
of pixels can be encoded as a tensor of size
3 × H × W , or depending on the convention
H × W × 3.
A series of N images can thus be encoded as a
single tensor of size N × 3 × H × W .
By using tensor operations, all the actors involved
in deep learning from , the GPU maker to the
driver, library, and application designers can make
strong assumptions that allow to utilize the phys-
ical computation units optimally. As we will see
in particular moving information in memory can
be limited, resulting in faster computations.
Standard Python structures (dictionaries, etc.)
should be avoided, and when one has many values
to store, they should be in a tensor.

!
The “dimension” of a vector in linear algebra is its number of coefficients,
while the “dimension” of a tensor is the number of indices to specify
one of its coefficients.

E.g. an element of R3 is a three-dimension vector, but a one-dimension tensor.

François Fleuret Deep learning / 1.4. Tensor basics and linear regression 2 / 13

PyTorch’s main features are:

• Efficient tensor operations on CPU/GPU,

• automatic on-the-fly differentiation (autograd),

• optimizers,

• data I/O.

“Efficient tensor operations” encompass both standard linear algebra and, as we will see
later, deep-learning specific operations (convolution, pooling, etc.)

A key specificity of PyTorch is the central role of autograd to compute derivatives of
anything ! We will come back to this.

François Fleuret Deep learning / 1.4. Tensor basics and linear regression 3 / 13

Notes

One of the key component of PyTorch is autograd,
which allows to compute the gradient of any
quantity with respect to any tensor involved in
the computation. This will be presented in lecture
4.2. “Autograd”.
Other deep-learning frameworks offer similar func-
tionalities.

>>> x = torch.empty(2, 5)
>>> x.size()
torch.Size([2, 5])
>>> x.fill_(1.125)
tensor([[1.1250, 1.1250, 1.1250, 1.1250, 1.1250],

[1.1250, 1.1250, 1.1250, 1.1250, 1.1250]])
>>> x.mean()
tensor(1.1250)
>>> x.std()
tensor(0.)
>>> x.sum()
tensor(11.2500)
>>> x.sum().item()
11.25

In-place operations are suffixed with an underscore, and a 0d tensor can be converted
back to a Python scalar with item().

! Reading a coefficient returns a 0d tensor.

>>> x = torch.tensor([[11., 12., 13.], [21., 22., 23.]])
>>> x[1, 2]
tensor(23.)

François Fleuret Deep learning / 1.4. Tensor basics and linear regression 4 / 13

Notes

size() returns the size / shape of the tensor
and has as many components as the number of
dimensions of the tensor. E.g. a tensor of size
torch.Size([2, 5]) is a matrix with two rows
and five columns.
We should use item() when printing a single
value (to a text file for instance), otherwise
tensor(...) is printed.
The default tensor type torch.Tensor is an
alias for torch.FloatTensor, but there are
others with greater/lesser precision and on
CPU/GPU. It can be set to a different type
with torch.set_default_tensor_type. We
will come back to this.

PyTorch provides operators for component-wise and vector/matrix operations.

>>> x = torch.tensor([10., 20., 30.])
>>> y = torch.tensor([11., 21., 31.])
>>> x + y
tensor([21., 41., 61.])
>>> x * y
tensor([110., 420., 930.])
>>> x**2
tensor([100., 400., 900.])
>>> m = torch.tensor([[0., 0., 3.],
... [0., 2., 0.],
... [1., 0., 0.]])
>>> m.mv(x)
tensor([90., 40., 10.])
>>> m @ x
tensor([90., 40., 10.])

François Fleuret Deep learning / 1.4. Tensor basics and linear regression 5 / 13

Notes

The @ operator corresponds to matrix/vector
or matrix/matrix multiplication, while * is
component-wise product and can be applied to
tensors of arbitrary size, in particular of dimen-
sion greater than 2.

And as in NumPy, the : symbol defines a range of values for an index and allows to
slice tensors.

>>> import torch
>>> x = torch.randint(10, (2, 4))
>>> x
tensor([[8, 7, 6, 6],

[5, 0, 4, 8]])
>>> x[0]
tensor([8, 7, 6, 6])
>>> x[0, :]
tensor([8, 7, 6, 6])
>>> x[:, 0]
tensor([8, 5])
>>> x[:, 1:3] = -1
>>> x
tensor([[8, -1, -1, 6],

[5, -1, -1, 8]])

François Fleuret Deep learning / 1.4. Tensor basics and linear regression 6 / 13

Notes

Pytorch tensors can be sliced in the same way as
NumPy arrays can.

PyTorch provides interfacing to standard linear operations, such as linear system solving
or eigen-decomposition.

>>> y = torch.randn(3)
>>> y
tensor([1.3663, -0.5444, -1.7488])
>>> m = torch.randn(3, 3)
>>> q = torch.linalg.lstsq(m, y).solution
>>> m@q
tensor([1.3663, -0.5444, -1.7488])

François Fleuret Deep learning / 1.4. Tensor basics and linear regression 7 / 13

Notes

This is a simple example showing how to create
a tensor, how to fill it with values following a
Gaussian distribution, and how to call lstsq to
solve a linear system, such that given y ∈ R3 and
m ∈ ℳ(3, 3), we get q ∈ R3 such that mq = y .

Example: linear regression

François Fleuret Deep learning / 1.4. Tensor basics and linear regression 8 / 13

Given a list of points
(xn, yn) ∈ R× R, n = 1, . . . ,N,

can we find the affine function

f (x ; a, b) = ax + b

that “goes best through the points”, e.g. minimizes the mean square error

argmin
a,b

1

N

N∑
n=1

(
axn + b︸ ︷︷ ︸
f (xn ;a,b)

−yn
)2
.

Such a model would allow to predict the y associated to a new x , simply by calculating
f (x ; a, b).

François Fleuret Deep learning / 1.4. Tensor basics and linear regression 9 / 13

Notes

Linear regression consists in finding an affine
function that best fits a list of pairs of points.
A standard way of formalizing the problem is to
minimize the mean square error.
Under the affine model f , the output of each xn is
f (xn) = axn + b, and we want this value to be as
close as possible to yn. This “closeness” is quan-
tified with the quadratic error (axn + b − yn)

2,
for all n.
We want to find the best (a, b) that will minimize
the mean square error.

bash> cat systolic-blood-pressure-vs-age.dat
39 144
47 220
45 138
47 145
65 162
46 142
67 170
42 124
67 158
56 154
64 162
56 150
59 140
34 110
42 128
/.../

François Fleuret Deep learning / 1.4. Tensor basics and linear regression 10 / 13

Notes

The data we use to illustrate linear regression
consists of pairs of age and systolic blood pressure.
What we want to predict is the blood pressure yn
of a person given his/her age xn.
Once the model is trained, we should be able to
have an estimation of the systolic blood pressure
of someone given his/her age.

10 20 30 40 50 60 70 80

Age (years)

100

120

140

160

180

200

220

240

S
ys

to
lic

b
lo

o
d

pr
es

u
re

(m
m

H
g)

data

François Fleuret Deep learning / 1.4. Tensor basics and linear regression 11 / 13

Notes

This scatter plot depicts the data set. Each pair
of the data set is represented by a point, the age
being on the x-axis, and the corresponding blood
pressure on the y -axis.
The plot shows that the systolic blood pressure
increases with the age of a person, roughly in a
linear (actually affine) way.


x1 y1
x2 y2
...

...
xN yN


︸ ︷︷ ︸

data∈RN×2


x1 1.0
x2 1.0
...

...
xN 1.0


︸ ︷︷ ︸

x∈RN×2

(
a
b

)
︸ ︷︷ ︸
α∈R2×1

≃


y1
y2
...
yN


︸ ︷︷ ︸
y∈RN×1

import torch, numpy

data = torch.tensor(numpy.loadtxt('systolic-blood-pressure-vs-age.dat'))
nb_samples = data.size(0)

x, y = torch.empty(nb_samples, 2), torch.empty(nb_samples, 1)

x[:, 0] = data[:, 0]
x[:, 1] = 1

y[:, 0] = data[:, 1]

alpha = torch.linalg.lstsq(x, y).solution

a, b = alpha[0, 0].item(), alpha[1, 0].item()

François Fleuret Deep learning / 1.4. Tensor basics and linear regression 12 / 13

Notes

Given each pair (xn, yn), we want to compute
axn + b, and make it as close as possible to yn
by finding the best (a, b).
The computation can be written in a matrix form:


x1 1.0
x2 1.0

.

.

.
.
.
.

xN 1.0


(

a
b

)
=


ax1 + b
ax2 + b

.

.

.
axN + b


data.size(0) returns the size of dimension 0 of
data, which corresponds to the number of rows
of data, the number of data points.
Slice [:, 0] means the first column of the tensor:
dimension 0 on each row.

10 20 30 40 50 60 70 80

Age (years)

100

120

140

160

180

200

220

240

S
ys

to
lic

b
lo

o
d

pr
es

u
re

(m
m

H
g)

data

ax + b

François Fleuret Deep learning / 1.4. Tensor basics and linear regression 13 / 13

Notes

The plot shows the model obtained after fitting
the data: this is the best linear approximation of
the data that minimizes the mean square error.
The model can now be used to predict the systolic
blood pressure of someone given his/hew age.
This example illustrates the limitations of ma-
chine learning, and even though the general struc-
ture is captured, the model may perform badly
on some individuals. Still, this is better than not
taking the age in to account and could be useful
in practical situations.

	Example: linear regression

