Update.
[pytorch] / mine_mnist.py
index 6f65136..5ab427f 100755 (executable)
@@ -1,10 +1,5 @@
 #!/usr/bin/env python
 
-# @XREMOTE_HOST: elk.fleuret.org
-# @XREMOTE_EXEC: ~/conda/bin/python
-# @XREMOTE_PRE: ln -s ~/data/pytorch ./data
-# @XREMOTE_PRE: killall -q -9 python || true
-
 import math, sys, torch, torchvision
 
 from torch import nn
@@ -12,21 +7,44 @@ from torch.nn import functional as F
 
 ######################################################################
 
-# Returns a pair of tensors (a, b, c), where a and b are tensors
-# containing each half of the samples, with a[i] and b[i] of same
-# class for any i, and c is a 1d long tensor with the count of pairs
-# per class used.
+train_set = torchvision.datasets.MNIST('./data/mnist/', train = True, download = True)
+train_input  = train_set.train_data.view(-1, 1, 28, 28).float()
+train_target = train_set.train_labels
+
+test_set = torchvision.datasets.MNIST('./data/mnist/', train = False, download = True)
+test_input = test_set.test_data.view(-1, 1, 28, 28).float()
+test_target = test_set.test_labels
 
-def create_pair_set(used_classes, input, target):
+mu, std = train_input.mean(), train_input.std()
+train_input.sub_(mu).div_(std)
+test_input.sub_(mu).div_(std)
+
+used_MNIST_classes = torch.tensor([ 0, 1, 3, 5, 6, 7, 8, 9])
+# used_MNIST_classes = torch.tensor([ 0, 9, 7 ])
+# used_MNIST_classes = torch.tensor([ 3, 4, 7, 0 ])
+
+######################################################################
+
+# Returns a triplet of tensors (a, b, c), where a and b contain each
+# half of the samples, with a[i] and b[i] of same class for any i, and
+# c is a 1d long tensor with the count of pairs per class used.
+
+def create_MNIST_pair_set(train = False):
     ua, ub = [], []
 
-    for i in used_classes:
+    if train:
+        input, target = train_input, train_target
+    else:
+        input, target = test_input, test_target
+
+    for i in used_MNIST_classes:
         used_indices = torch.arange(input.size(0), device = target.device)\
                             .masked_select(target == i.item())
         x = input[used_indices]
         x = x[torch.randperm(x.size(0))]
-        ua.append(x.narrow(0, 0, x.size(0)//2))
-        ub.append(x.narrow(0, x.size(0)//2, x.size(0)//2))
+        hs = x.size(0)//2
+        ua.append(x.narrow(0, 0, hs))
+        ub.append(x.narrow(0, hs, hs))
 
     a = torch.cat(ua, 0)
     b = torch.cat(ub, 0)
@@ -48,6 +66,7 @@ class Net(nn.Module):
         self.fc2 = nn.Linear(200, 1)
 
     def forward(self, a, b):
+        # Make the two images a single two-channel image
         x = torch.cat((a, b), 1)
         x = F.relu(F.max_pool2d(self.conv1(x), kernel_size = 3))
         x = F.relu(F.max_pool2d(self.conv2(x), kernel_size = 2))
@@ -58,28 +77,12 @@ class Net(nn.Module):
 
 ######################################################################
 
-train_set = torchvision.datasets.MNIST('./data/mnist/', train = True, download = True)
-train_input  = train_set.train_data.view(-1, 1, 28, 28).float()
-train_target = train_set.train_labels
-
-test_set = torchvision.datasets.MNIST('./data/mnist/', train = False, download = True)
-test_input = test_set.test_data.view(-1, 1, 28, 28).float()
-test_target = test_set.test_labels
-
-mu, std = train_input.mean(), train_input.std()
-train_input.sub_(mu).div_(std)
-test_input.sub_(mu).div_(std)
-
-######################################################################
-
-# The information bound is the log of the number of classes in there
-
-# used_classes = torch.tensor([ 0, 1, 3, 5, 6, 7, 8, 9])
-used_classes = torch.tensor([ 3, 4, 7, 0 ])
-
 nb_epochs, batch_size = 50, 100
 
 model = Net()
+
+print('nb_parameters %d' % sum(x.numel() for x in model.parameters()))
+
 optimizer = torch.optim.Adam(model.parameters(), lr = 1e-3)
 
 if torch.cuda.is_available():
@@ -89,8 +92,9 @@ if torch.cuda.is_available():
 
 for e in range(nb_epochs):
 
-    input_a, input_b, count = create_pair_set(used_classes, train_input, train_target)
+    input_a, input_b, count = create_MNIST_pair_set(train = True)
 
+    # The information bound is the entropy of the class distribution
     class_proba = count.float()
     class_proba /= class_proba.sum()
     class_entropy = - (class_proba.log() * class_proba).sum().item()
@@ -111,13 +115,13 @@ for e in range(nb_epochs):
 
     acc_mi /= (input_a.size(0) // batch_size)
 
-    print('%d %.04f %.04f'%(e, acc_mi / math.log(2), class_entropy / math.log(2)))
+    print('%d %.04f %.04f' % (e, acc_mi / math.log(2), class_entropy / math.log(2)))
 
     sys.stdout.flush()
 
 ######################################################################
 
-input_a, input_b, count = create_pair_set(used_classes, test_input, test_target)
+input_a, input_b, count = create_MNIST_pair_set(train = False)
 
 for e in range(nb_epochs):
     class_proba = count.float()
@@ -131,8 +135,8 @@ for e in range(nb_epochs):
     for batch_a, batch_b, batch_br in zip(input_a.split(batch_size),
                                           input_b.split(batch_size),
                                           input_br.split(batch_size)):
-        loss = - (model(batch_a, batch_b).mean() - model(batch_a, batch_br).exp().mean().log())
-        acc_mi -= loss.item()
+        mi = model(batch_a, batch_b).mean() - model(batch_a, batch_br).exp().mean().log()
+        acc_mi += mi.item()
 
     acc_mi /= (input_a.size(0) // batch_size)