Oups
[picoclvr.git] / tasks.py
index 82d965b..c0ad5ff 100755 (executable)
--- a/tasks.py
+++ b/tasks.py
@@ -1,12 +1,22 @@
 #!/usr/bin/env python
 
-import math, os, tqdm
+# Any copyright is dedicated to the Public Domain.
+# https://creativecommons.org/publicdomain/zero/1.0/
+
+# Written by Francois Fleuret <francois@fleuret.org>
+
+import math, os, tqdm, warnings
 
 import torch, torchvision
 
 from torch import nn
 from torch.nn import functional as F
 
+from mygpt import BracketedSequence
+
+# from graph import save_attention_image
+save_attention_image = None
+
 ######################################################################
 
 
@@ -17,9 +27,12 @@ def masked_inplace_autoregression(
     ar_mask,
     deterministic_synthesis,
     forbidden_tokens=None,
+    logit_biases=None,
     progress_bar_desc="autoregression",
     device=torch.device("cpu"),
 ):
+    assert input.size() == ar_mask.size()
+
     batches = zip(input.split(batch_size), ar_mask.split(batch_size))
 
     if progress_bar_desc is not None:
@@ -27,7 +40,7 @@ def masked_inplace_autoregression(
             batches,
             dynamic_ncols=True,
             desc=progress_bar_desc,
-            total=input.size(0) // batch_size,
+            total=(input.size(0) + batch_size - 1) // batch_size,
         )
 
     with torch.autograd.no_grad():
@@ -36,7 +49,11 @@ def masked_inplace_autoregression(
 
         for input, ar_mask in batches:
             model.masked_inplace_autoregression(
-                input, ar_mask, forbidden_tokens, deterministic_synthesis
+                input,
+                ar_mask,
+                deterministic_synthesis,
+                forbidden_tokens,
+                logit_biases,
             )
 
         model.train(t)
@@ -46,7 +63,7 @@ def masked_inplace_autoregression(
 
 
 class Task:
-    def batches(self, split="train"):
+    def batches(self, split="train", nb_to_use=-1, desc=None):
         pass
 
     def vocabulary_size(self):
@@ -58,6 +75,326 @@ class Task:
         pass
 
 
+class TaskFromFile(Task):
+    def tensorize(self, pairs, shuffle):
+        len_max = max([len(x[0]) for x in pairs])
+
+        input = torch.cat(
+            [
+                torch.tensor(
+                    [
+                        [self.char2id[c] for c in s[0] + "#" * (len_max - len(s[0]))]
+                        for s in pairs
+                    ]
+                )
+            ],
+            0,
+        ).to("cpu")
+
+        pred_mask = torch.cat(
+            [
+                torch.tensor(
+                    [
+                        [int(c) for c in s[1] + "0" * (len_max - len(s[1]))]
+                        for s in pairs
+                    ]
+                )
+            ],
+            0,
+        ).to("cpu")
+
+        if shuffle:
+            i = torch.randperm(input.size(0))
+            input = input[i].contiguous()
+            pred_mask = pred_mask[i].contiguous()
+
+        return input, pred_mask
+
+    # trim all the tensors in the tuple z to remove as much token from
+    # left and right in the first tensor. If z is a tuple, all its
+    # elements are trimed according to the triming for the first
+    def trim(self, z, token="#"):
+        n = self.char2id[token]
+        if type(z) == tuple:
+            x = z[0]
+            i = (1 - (F.pad(x, (1, 1), value=n) == n).min(0).values.long()).cumsum(0)
+            a, b = (i == 0).nonzero().max(), (i == i.max()).nonzero().min()
+            return tuple([t[:, a:b] for t in z])
+        else:
+            i = (1 - (F.pad(z, (1, 1), value=n) == n).min(0).values.long()).cumsum(0)
+            a, b = (i == 0).nonzero().max(), (i == i.max()).nonzero().min()
+            return z[:, a:b]
+
+    def __init__(
+        self,
+        train_filename,
+        test_filename,
+        nb_train_samples,
+        nb_test_samples,
+        batch_size,
+        shuffle=False,
+        device=torch.device("cpu"),
+    ):
+        self.batch_size = batch_size
+        self.device = device
+
+        def read_file(filename, nb=-1):
+            pairs = []
+            with open(filename, "r") as f:
+                while True:
+                    sequence = f.readline().strip()
+                    if not sequence:
+                        break
+                    pred_mask = f.readline().strip()
+                    assert len(sequence) == len(pred_mask)
+                    assert set(pred_mask).issubset({"0", "1", "2"}), f"{set(pred_mask)}"
+                    pairs.append((sequence, pred_mask))
+                    if len(pairs) == nb:
+                        break
+
+            if nb > 0:
+                pairs = pairs[:nb]
+                assert len(pairs) == nb
+
+            return pairs
+
+        train_pairs = read_file(train_filename, nb_train_samples)
+        test_pairs = read_file(test_filename, nb_test_samples)
+
+        symbols = ["#"] + list(
+            set("".join([x[0] for x in train_pairs + test_pairs])) - set(["#"])
+        )
+        self.char2id = dict([(c, n) for n, c in enumerate(symbols)])
+        self.id2char = dict([(n, c) for c, n in self.char2id.items()])
+
+        self.train_input, self.train_pred_masks = self.tensorize(
+            train_pairs, shuffle=shuffle
+        )
+        self.test_input, self.test_pred_masks = self.tensorize(
+            test_pairs, shuffle=shuffle
+        )
+
+    def batches(self, split="train", nb_to_use=-1, desc=None):
+        assert split in {"train", "test"}
+        input = self.train_input if split == "train" else self.test_input
+        if nb_to_use > 0:
+            input = input[:nb_to_use]
+        if desc is None:
+            desc = f"epoch-{split}"
+        for batch in tqdm.tqdm(
+            input.split(self.batch_size), dynamic_ncols=True, desc=desc
+        ):
+            yield self.trim(batch).to(self.device)
+
+    def vocabulary_size(self):
+        return len(self.char2id)
+
+    def tensor2str(self, t):
+        return ["".join([self.id2char[x.item()] for x in s]) for s in t]
+
+    def produce_results(
+        self, n_epoch, model, result_dir, logger, deterministic_synthesis
+    ):
+        correct = self.trim(self.test_input[:1000]).to(self.device)
+        result = correct.clone()
+        pred_mask = self.test_pred_masks[:1000, : result.size(1)].to(self.device)
+        ar_mask = (pred_mask > 0).long()
+        result *= 1 - ar_mask  # paraaaaanoiaaaaaaa
+
+        logger(f"----------------------------------------------------------")
+
+        for e in self.tensor2str(result[:50]):
+            logger(f"test_before {e}")
+
+        masked_inplace_autoregression(
+            model,
+            self.batch_size,
+            result,
+            ar_mask,
+            deterministic_synthesis,
+            device=self.device,
+        )
+
+        logger(f"----------------------------------------------------------")
+
+        for e, c in zip(self.tensor2str(result[:50]), self.tensor2str(correct[:50])):
+            logger(f"test_after  {e}")
+            logger(f"correct     {c}")
+
+        logger(f"----------------------------------------------------------")
+
+        err_mask = (pred_mask == 2).long()
+        nb_total = err_mask.sum().item()
+        nb_correct = ((correct == result).long() * err_mask).sum().item()
+
+        logger(f"test_performance {n_epoch} {nb_total=} {nb_correct=}")
+        logger(f"main_test_accuracy {n_epoch} {nb_correct / nb_total}")
+
+
+####################
+
+import problems
+
+
+class SandBox(Task):
+    def __init__(
+        self,
+        problem,
+        nb_train_samples,
+        nb_test_samples,
+        batch_size,
+        logger=None,
+        device=torch.device("cpu"),
+        max_nb_codes=1024,
+    ):
+        super().__init__()
+
+        self.batch_size = batch_size
+        self.device = device
+        self.problem = problem
+
+        self.train_input, self.train_ar_mask = self.problem.generate_sequences(
+            nb_train_samples
+        )
+        self.test_input, self.test_ar_mask = self.problem.generate_sequences(
+            nb_test_samples
+        )
+
+        self.train_input, self.train_ar_mask = self.train_input.to(
+            device
+        ), self.train_ar_mask.to(device)
+        self.test_input, self.test_ar_mask = self.test_input.to(
+            device
+        ), self.test_ar_mask.to(device)
+
+        self.nb_codes = max(self.train_input.max(), self.test_input.max()) + 1
+
+        # A bit of paranoia never hurts
+        assert self.nb_codes <= max_nb_codes
+        assert self.train_input.min() >= 0
+        assert self.test_input.min() >= 0
+        assert tuple(x.item() for x in self.train_ar_mask.unique()) in {
+            (0,),
+            (1,),
+            (0, 1),
+        }
+        assert tuple(x.item() for x in self.test_ar_mask.unique()) in {
+            (0,),
+            (1,),
+            (0, 1),
+        }
+
+        if logger is not None:
+            for s, a in zip(self.train_input[:100], self.train_ar_mask[:100]):
+                logger(f"train_sequences {self.problem.seq2str(s)}")
+                a = "".join(["01"[x.item()] for x in a])
+                logger(f"                {a}")
+
+    def batches(self, split="train", nb_to_use=-1, desc=None):
+        assert split in {"train", "test"}
+        input = self.train_input if split == "train" else self.test_input
+        if nb_to_use > 0:
+            input = input[:nb_to_use]
+        if desc is None:
+            desc = f"epoch-{split}"
+        for batch in tqdm.tqdm(
+            input.split(self.batch_size), dynamic_ncols=True, desc=desc
+        ):
+            yield batch
+
+    def vocabulary_size(self):
+        return self.nb_codes
+
+    def produce_results(
+        self, n_epoch, model, result_dir, logger, deterministic_synthesis, nmax=1000
+    ):
+        def compute_accuracy(input, ar_mask, logger=None):
+            input, ar_mask = input[:nmax], ar_mask[:nmax]
+            result = input.clone() * (1 - ar_mask)
+
+            masked_inplace_autoregression(
+                model,
+                self.batch_size,
+                result,
+                ar_mask,
+                deterministic_synthesis,
+                progress_bar_desc=None,
+                device=self.device,
+            )
+
+            log_ground_truth = ar_mask.min() == 0
+
+            if logger is not None:
+                for sp, st in zip(result[:10], input[:10]):
+                    logger(
+                        f"test_sequences {n_epoch} prediction   {self.problem.seq2str(sp)}"
+                    )
+                    if log_ground_truth:
+                        logger(
+                            f"               {n_epoch} ground truth {self.problem.seq2str(st)}"
+                        )
+
+            nb_total, nb_correct = self.problem.compute_nb_correct(
+                input, ar_mask, result
+            )
+
+            # nb_total = ar_mask.sum().item()
+            # nb_correct = ((result == input).long() * ar_mask).sum().item()
+
+            return nb_total, nb_correct
+
+        train_nb_total, train_nb_correct = compute_accuracy(
+            self.train_input, self.train_ar_mask
+        )
+
+        logger(
+            f"accuracy_train {n_epoch} nb_total {train_nb_total} nb_correct {train_nb_correct} accuracy {(100.0*train_nb_correct)/train_nb_total:.02f}%"
+        )
+
+        test_nb_total, test_nb_correct = compute_accuracy(
+            self.test_input, self.test_ar_mask, logger
+        )
+
+        logger(
+            f"accuracy_test {n_epoch} nb_total {test_nb_total} nb_correct {test_nb_correct} accuracy {(100.0*test_nb_correct)/test_nb_total:.02f}%"
+        )
+
+        logger(f"main_test_accuracy {n_epoch} {test_nb_correct/test_nb_total}")
+
+        if save_attention_image is not None:
+            for k in range(10):
+                ns = torch.randint(self.test_input.size(0), (1,)).item()
+                input = self.test_input[ns : ns + 1].clone()
+
+                with torch.autograd.no_grad():
+                    t = model.training
+                    model.eval()
+                    # model.record_attention(True)
+                    model(BracketedSequence(input))
+                    model.train(t)
+                    # ram = model.retrieve_attention()
+                    # model.record_attention(False)
+
+                # tokens_output = [c for c in self.problem.seq2str(input[0])]
+                # tokens_input = ["n/a"] + tokens_output[:-1]
+                # for n_head in range(ram[0].size(1)):
+                # filename = os.path.join(
+                # result_dir, f"sandbox_attention_{k}_h{n_head}.pdf"
+                # )
+                # attention_matrices = [m[0, n_head] for m in ram]
+                # save_attention_image(
+                # filename,
+                # tokens_input,
+                # tokens_output,
+                # attention_matrices,
+                # k_top=10,
+                ##min_total_attention=0.9,
+                # token_gap=12,
+                # layer_gap=50,
+                # )
+                # logger(f"wrote {filename}")
+
+
 ######################################################################
 
 import picoclvr
@@ -106,6 +443,8 @@ class PicoCLVR(Task):
         pruner_train=None,
         pruner_eval=None,
     ):
+        super().__init__()
+
         def generate_descr(nb, cache_suffix, pruner):
             return picoclvr.generate(
                 nb,
@@ -150,7 +489,7 @@ class PicoCLVR(Task):
         self.train_input = self.tensorize(self.train_descr)
         self.test_input = self.tensorize(self.test_descr)
 
-    def batches(self, split="train"):
+    def batches(self, split="train", nb_to_use=-1, desc=None):
         assert split in {"train", "test"}
         input = self.train_input if split == "train" else self.test_input
         for batch in tqdm.tqdm(
@@ -210,6 +549,10 @@ class PicoCLVR(Task):
             f"property_{prefix}miss {n_epoch} {100*nb_missing_properties/nb_requested_properties:.02f}%"
         )
 
+        logger(
+            f"main_test_accuracy {n_epoch} {1-nb_missing_properties/nb_requested_properties}"
+        )
+
     ######################################################################
 
     def produce_results(
@@ -294,6 +637,8 @@ class MNIST(Task):
     def __init__(
         self, nb_train_samples, nb_test_samples, batch_size, device=torch.device("cpu")
     ):
+        super().__init__()
+
         self.nb_train_samples = (nb_train_samples,)
         self.nb_test_samples = (nb_test_samples,)
         self.batch_size = batch_size
@@ -364,6 +709,8 @@ class Maze(Task):
         nb_walls,
         device=torch.device("cpu"),
     ):
+        super().__init__()
+
         self.batch_size = batch_size
         self.height = height
         self.width = width
@@ -476,6 +823,8 @@ class Maze(Task):
             f"accuracy_test {n_epoch} nb_total {test_nb_total} nb_correct {test_nb_correct} accuracy {(100.0*test_nb_correct)/test_nb_total:.02f}%"
         )
 
+        logger(f"main_test_accuracy {n_epoch} {test_nb_correct/test_nb_total}")
+
         if count is not None:
             proportion_optimal = count.diagonal().sum().float() / count.sum()
             logger(f"proportion_optimal_test {proportion_optimal*100:.02f}%")
@@ -535,6 +884,8 @@ class Snake(Task):
         prompt_length,
         device=torch.device("cpu"),
     ):
+        super().__init__()
+
         self.batch_size = batch_size
         self.height = height
         self.width = width
@@ -590,8 +941,6 @@ class Snake(Task):
             )
             result *= 1 - ar_mask
 
-            # snake.solver(result,ar_mask)
-
             masked_inplace_autoregression(
                 model,
                 self.batch_size,
@@ -605,19 +954,8 @@ class Snake(Task):
 
             nb_correct = ((result == input).long() * (prior_visits > 0) * ar_mask).sum()
 
-            # nb_total = result.size(0)
-            # nb_correct = ((result - input).abs().sum(1) == 0).sum()
-
             return nb_total, nb_correct
 
-        # train_nb_total, train_nb_correct = compute_nb_correct(
-        # self.train_input, self.train_prior_visits
-        # )
-
-        # logger(
-        # f"accuracy_train nb_total {train_nb_total} nb_correct {train_nb_correct} accuracy {(100.0*train_nb_correct)/train_nb_total:.02f}%"
-        # )
-
         test_nb_total, test_nb_correct = compute_nb_correct(
             self.test_input[:1000], self.test_prior_visits[:1000]
         )
@@ -626,6 +964,8 @@ class Snake(Task):
             f"accuracy_test {n_epoch} nb_total {test_nb_total} nb_correct {test_nb_correct} accuracy {(100.0*test_nb_correct)/test_nb_total:.02f}%"
         )
 
+        logger(f"main_test_accuracy {n_epoch} {test_nb_correct/test_nb_total}")
+
 
 ######################################################################
 
@@ -646,6 +986,8 @@ class Stack(Task):
         fraction_values_for_train=None,
         device=torch.device("cpu"),
     ):
+        super().__init__()
+
         self.batch_size = batch_size
         self.nb_steps = nb_steps
         self.nb_stacks = nb_stacks
@@ -733,6 +1075,8 @@ class Stack(Task):
             f"accuracy_test {n_epoch} nb_total {test_nb_total} nb_correct {test_nb_correct} accuracy {(100.0*test_nb_correct)/test_nb_total:.02f}%"
         )
 
+        logger(f"main_test_accuracy {n_epoch} {test_nb_correct/test_nb_total}")
+
         ##############################################################
         # Log a few generated sequences
         input = self.test_input[:10, : 12 * (1 + self.nb_digits)]
@@ -763,66 +1107,127 @@ class Stack(Task):
 
 ######################################################################
 
-
-import expr
+import rpl
 
 
-class Expr(Task):
+class RPL(Task):
     def tensorize(self, sequences):
         len_max = max([len(x) for x in sequences])
         return torch.cat(
             [
                 torch.tensor(
                     [
-                        [self.char2id[c] for c in s + "#" * (len_max - len(s))]
+                        [
+                            self.token2id[str(c)]
+                            for c in s + ["<nul>"] * (len_max - len(s))
+                        ]
                         for s in sequences
                     ]
                 )
             ],
             0,
-        ).to(self.device)
+        )
+
+    def seq2str(self, seq):
+        return " ".join([self.id2token[i] for i in seq])
 
     def __init__(
         self,
         nb_train_samples,
         nb_test_samples,
-        nb_variables,
-        sequence_length,
-        operand_max,
-        result_max,
         batch_size,
+        nb_starting_values=3,
+        max_input=9,
+        prog_len=6,
+        nb_runs=5,
+        no_prog=False,
+        logger=None,
         device=torch.device("cpu"),
     ):
+        super().__init__()
+
         self.batch_size = batch_size
         self.device = device
+        self.no_prog = no_prog
+
+        train_sequences = [
+            rpl.generate(
+                nb_starting_values=nb_starting_values,
+                nb_result_values_max=4 * nb_starting_values,
+                max_input=max_input,
+                prog_len=prog_len,
+                nb_runs=nb_runs,
+            )
+            for _ in tqdm.tqdm(range(nb_train_samples), desc="train-data")
+        ]
+
+        test_sequences = [
+            rpl.generate(
+                nb_starting_values=nb_starting_values,
+                nb_result_values_max=4 * nb_starting_values,
+                max_input=max_input,
+                prog_len=prog_len,
+                nb_runs=nb_runs,
+            )
+            for _ in tqdm.tqdm(range(nb_test_samples), desc="test-data")
+        ]
 
-        train_sequences = expr.generate_sequences(
-            nb_train_samples,
-            nb_variables=nb_variables,
-            length=sequence_length,
-            operand_max=operand_max,
-            result_max=result_max,
-        )
-
-        test_sequences = expr.generate_sequences(
-            nb_test_samples,
-            nb_variables=nb_variables,
-            length=sequence_length,
-            operand_max=operand_max,
-            result_max=result_max,
+        symbols = list(
+            set(["<nul>"] + [x for l in train_sequences + test_sequences for x in l])
         )
-
-        symbols = list(set("#" + "".join(train_sequences + test_sequences)))
+        val_max = max([x if type(x) is int else 0 for x in symbols])
+        symbols = list(filter(lambda x: type(x) is str, symbols))
         symbols.sort()
+        symbols += [str(n) for n in range(val_max + 1)]
+        self.token2id = dict([(c, n) for n, c in enumerate(symbols)])
+        self.id2token = dict([(n, c) for c, n in self.token2id.items()])
 
-        self.char2id = dict([(c, n) for n, c in enumerate(symbols)])
-        self.id2char = dict([(n, c) for c, n in self.char2id.items()])
-
-        self.filler, self.space = self.char2id["#"], self.char2id[" "]
+        self.t_nul = self.token2id["<nul>"]
+        self.t_input = self.token2id["<in>"]
+        self.t_output = self.token2id["<out>"]
+        self.t_prog = self.token2id["<prg>"]
+        self.t_end = self.token2id["<end>"]
 
         self.train_input = self.tensorize(train_sequences)
         self.test_input = self.tensorize(test_sequences)
 
+        if no_prog:
+            # Excise the program from every train and test example
+            k = torch.arange(self.train_input.size(1), device=self.train_input.device)[
+                None, :
+            ]
+            p = (
+                ((self.train_input == self.t_prog).long() * k)
+                .max(1, keepdim=True)
+                .values
+            )
+            self.train_input = (
+                self.train_input * (k <= p).long()
+                + self.t_end * (k == p + 1).long()
+                + self.t_nul * (k > p + 1).long()
+            )
+            k = torch.arange(self.test_input.size(1), device=self.test_input.device)[
+                None, :
+            ]
+            p = (
+                ((self.test_input == self.t_prog).long() * k)
+                .max(1, keepdim=True)
+                .values
+            )
+            self.test_input = (
+                self.test_input * (k <= p).long()
+                + self.t_end * (k == p + 1).long()
+                + self.t_nul * (k > p + 1).long()
+            )
+
+        if logger is not None:
+            logger(f"value_max {val_max}")
+            for x in self.train_input[:25]:
+                end = (x != self.t_nul).nonzero().max().item() + 1
+                seq = [self.id2token[i.item()] for i in x[:end]]
+                s = " ".join(seq)
+                logger(f"example_seq {s}")
+
         self.nb_codes = max(self.train_input.max(), self.test_input.max()) + 1
 
     def batches(self, split="train", nb_to_use=-1, desc=None):
@@ -835,30 +1240,23 @@ class Expr(Task):
         for batch in tqdm.tqdm(
             input.split(self.batch_size), dynamic_ncols=True, desc=desc
         ):
-            last = (batch != self.filler).max(0).values.nonzero().max() + 3
-            batch = batch[:, :last]
+            last = (batch != self.t_nul).max(0).values.nonzero().max() + 3
+            batch = batch[:, :last].to(self.device)
             yield batch
 
     def vocabulary_size(self):
         return self.nb_codes
 
-    def seq2str(self, s):
-        return "".join([self.id2char[k.item()] for k in s])
-
     def produce_results(
-        self,
-        n_epoch,
-        model,
-        result_dir,
-        logger,
-        deterministic_synthesis,
-        input_file=None,
+        self, n_epoch, model, result_dir, logger, deterministic_synthesis
     ):
-        def compute_nb_correct(input):
+        # --------------------------------------------------------------------
+        def compute_nb_errors_prog(input, nb_to_log=0):
             result = input.clone()
-            s = (result == self.space).long()
+            s = (result == self.t_prog).long()
             ar_mask = (s.cumsum(dim=1) - s).clamp(min=0, max=1)
-            result = (1 - ar_mask) * result + ar_mask * self.filler
+            result = (1 - ar_mask) * result + ar_mask * self.t_nul
+
             masked_inplace_autoregression(
                 model,
                 self.batch_size,
@@ -868,29 +1266,273 @@ class Expr(Task):
                 device=self.device,
             )
 
-            nb_total = input.size(0)
-            nb_correct = (input == result).long().min(1).values.sum()
-
-            #######################################################################
-            # Comput predicted vs. true variable values
+            sum_nb_total, sum_nb_errors = 0, 0
+            for one_input, one_result in zip(input, result):
+                seq = [self.id2token[i.item()] for i in one_result]
+                nb_total, nb_errors, prog, stacks = rpl.compute_nb_errors(seq)
+                sum_nb_total += 1
+                sum_nb_errors += 0 if nb_errors == 0 else 1
+                if nb_to_log > 0:
+                    gt_seq = [self.id2token[i.item()] for i in one_input]
+                    _, _, gt_prog, _ = rpl.compute_nb_errors(gt_seq)
+                    gt_prog = " ".join([str(x) for x in gt_prog])
+                    prog = " ".join([str(x) for x in prog])
+                    comment = "*" if nb_errors == 0 else "-"
+                    logger(f"{comment} PROG [{gt_prog}] PREDICTED [{prog}]")
+                    for start_stack, target_stack, result_stack, correct in stacks:
+                        comment = "*" if correct else "-"
+                        start_stack = " ".join([str(x) for x in start_stack])
+                        target_stack = " ".join([str(x) for x in target_stack])
+                        result_stack = " ".join([str(x) for x in result_stack])
+                        logger(
+                            f"  {comment} [{start_stack}] -> [{target_stack}] PREDICTED [{result_stack}]"
+                        )
+                    nb_to_log -= 1
+
+            return sum_nb_total, sum_nb_errors
+
+        # --------------------------------------------------------------------
+        def compute_nb_errors_output(input, nb_to_log=0):
+            result = input.clone()
+            k = torch.arange(result.size(1), device=result.device)[None, :]
+            last_output_idx = (
+                ((result == self.t_output) * k).max(dim=1, keepdim=True).values
+            )
+            first_prog_idx = (
+                ((result == self.t_prog) * k).max(dim=1, keepdim=True).values
+            )
+            ar_mask = (k > last_output_idx).long() * (k < first_prog_idx).long()
+            result = (1 - ar_mask) * result + ar_mask * self.t_nul
 
-            nb_delta = torch.zeros(5, dtype=torch.int64)
+            masked_inplace_autoregression(
+                model,
+                self.batch_size,
+                result,
+                ar_mask,
+                deterministic_synthesis,
+                device=self.device,
+            )
+
+            sum_nb_total, sum_nb_errors = 0, 0
+            for one_input, one_result, i, j in zip(
+                input, result, last_output_idx, first_prog_idx
+            ):
+                seq = [self.id2token[i.item()] for i in one_result]
+                sum_nb_total += 1
+                correct = (one_input - one_result).abs().max() == 0
+                sum_nb_errors += 0 if correct else 1
+                if nb_to_log > 0:
+                    result_stack = [
+                        self.id2token[i.item()] for i in one_result[i : j + 1]
+                    ]
+                    target_stack = [
+                        self.id2token[i.item()] for i in one_input[i : j + 1]
+                    ]
+                    comment = "*" if correct else "-"
+                    result_stack = " ".join([str(x) for x in result_stack])
+                    target_stack = " ".join([str(x) for x in target_stack])
+                    logger(
+                        f"output_test {comment} [{target_stack}] PREDICTED [{result_stack}]"
+                    )
+                    nb_to_log -= 1
+
+            return sum_nb_total, sum_nb_errors
+
+        # --------------------------------------------------------------------
+
+        if not self.no_prog:
+            test_nb_total, test_nb_errors = compute_nb_errors_prog(
+                self.test_input[:1000].to(self.device), nb_to_log=10
+            )
+
+            logger(
+                f"accuracy_prog_test {n_epoch} nb_total {test_nb_total} nb_errors {test_nb_errors} accuracy {100.0*(1-test_nb_errors/test_nb_total):.02f}%"
+            )
+
+            logger(f"main_test_accuracy {n_epoch} {1-test_nb_errors/test_nb_total}")
+
+        test_nb_total, test_nb_errors = compute_nb_errors_output(
+            self.test_input[:1000].to(self.device), nb_to_log=10
+        )
+
+        logger(
+            f"accuracy_output_test {n_epoch} nb_total {test_nb_total} nb_errors {test_nb_errors} accuracy {100.0*(1-test_nb_errors/test_nb_total):.02f}%"
+        )
+
+        if save_attention_image is None:
+            logger("no save_attention_image (is pycairo installed?)")
+        else:
+            ns = torch.randint(self.test_input.size(0), (1,)).item()
+            input = self.test_input[ns : ns + 1].clone()
+            last = (input != self.t_nul).max(0).values.nonzero().max() + 3
+            input = input[:, :last].to(self.device)
+
+            with torch.autograd.no_grad():
+                t = model.training
+                model.eval()
+                model.record_attention(True)
+                model(BracketedSequence(input))
+                model.train(t)
+                ram = model.retrieve_attention()
+                model.record_attention(False)
+
+            tokens_output = [self.id2token[i.item()] for i in input[0]]
+            tokens_input = ["n/a"] + tokens_output[:-1]
+            for n_head in range(ram[0].size(1)):
+                filename = os.path.join(
+                    result_dir, f"rpl_attention_{n_epoch}_h{n_head}.pdf"
+                )
+                attention_matrices = [m[0, n_head] for m in ram]
+                save_attention_image(
+                    filename,
+                    tokens_input,
+                    tokens_output,
+                    attention_matrices,
+                    k_top=10,
+                    # min_total_attention=0.9,
+                    token_gap=12,
+                    layer_gap=50,
+                )
+                logger(f"wrote {filename}")
+
+
+######################################################################
+
+
+import expr
+
+
+class Expr(Task):
+    def tensorize(self, sequences):
+        len_max = max([len(x) for x in sequences])
+        return torch.cat(
+            [
+                torch.tensor(
+                    [
+                        [self.char2id[c] for c in s + "#" * (len_max - len(s))]
+                        for s in sequences
+                    ]
+                )
+            ],
+            0,
+        ).to(self.device)
+
+    def __init__(
+        self,
+        nb_train_samples,
+        nb_test_samples,
+        nb_variables,
+        sequence_length,
+        operand_max,
+        result_max,
+        batch_size,
+        device=torch.device("cpu"),
+    ):
+        super().__init__()
+
+        self.batch_size = batch_size
+        self.device = device
+
+        train_sequences = expr.generate_sequences(
+            nb_train_samples,
+            nb_variables=nb_variables,
+            length=sequence_length,
+            operand_max=operand_max,
+            result_max=result_max,
+        )
+
+        test_sequences = expr.generate_sequences(
+            nb_test_samples,
+            nb_variables=nb_variables,
+            length=sequence_length,
+            operand_max=operand_max,
+            result_max=result_max,
+        )
+
+        symbols = list(set("#" + "".join(train_sequences + test_sequences)))
+        symbols.sort()
+
+        self.char2id = dict([(c, n) for n, c in enumerate(symbols)])
+        self.id2char = dict([(n, c) for c, n in self.char2id.items()])
+
+        self.filler, self.space = self.char2id["#"], self.char2id[" "]
+
+        self.train_input = self.tensorize(train_sequences)
+        self.test_input = self.tensorize(test_sequences)
+
+        self.nb_codes = max(self.train_input.max(), self.test_input.max()) + 1
+
+    def batches(self, split="train", nb_to_use=-1, desc=None):
+        assert split in {"train", "test"}
+        input = self.train_input if split == "train" else self.test_input
+        if nb_to_use > 0:
+            input = input[:nb_to_use]
+        if desc is None:
+            desc = f"epoch-{split}"
+        for batch in tqdm.tqdm(
+            input.split(self.batch_size), dynamic_ncols=True, desc=desc
+        ):
+            last = (batch != self.filler).max(0).values.nonzero().max() + 3
+            batch = batch[:, :last]
+            yield batch
+
+    def vocabulary_size(self):
+        return self.nb_codes
+
+    def seq2str(self, s):
+        return "".join([self.id2char[k.item()] for k in s])
+
+    def produce_results(
+        self,
+        n_epoch,
+        model,
+        result_dir,
+        logger,
+        deterministic_synthesis,
+        input_file=None,
+    ):
+        def compute_nb_correct(input):
+            result = input.clone()
+            s = (result == self.space).long()
+            ar_mask = (s.cumsum(dim=1) - s).clamp(min=0, max=1)
+            result = (1 - ar_mask) * result + ar_mask * self.filler
+            masked_inplace_autoregression(
+                model,
+                self.batch_size,
+                result,
+                ar_mask,
+                deterministic_synthesis,
+                device=self.device,
+            )
+
+            nb_total = input.size(0)
+            nb_correct = (input == result).long().min(1).values.sum()
+
+            #######################################################################
+            # Comput predicted vs. true variable values
+
+            nb_delta = torch.zeros(5, dtype=torch.int64)
             nb_missed = 0
 
             values_input = expr.extract_results([self.seq2str(s) for s in input])
             values_result = expr.extract_results([self.seq2str(s) for s in result])
 
-            for i, r in zip(values_input, values_result):
-                for n, vi in i.items():
-                    vr = r.get(n)
-                    if vr is None or vr < 0:
-                        nb_missed += 1
-                    else:
-                        d = abs(vr - vi)
-                        if d >= nb_delta.size(0):
+            filename = os.path.join(result_dir, f"expr_result_{n_epoch:04d}.txt")
+
+            with open(filename, "w") as f:
+                for i, r in zip(values_input, values_result):
+                    for n, vi in i.items():
+                        vr = r.get(n)
+                        f.write(f"{vi} {-1 if vr is None else vr}\n")
+
+                        if vr is None or vr < 0:
                             nb_missed += 1
                         else:
-                            nb_delta[d] += 1
+                            d = abs(vr - vi)
+                            if d >= nb_delta.size(0):
+                                nb_missed += 1
+                            else:
+                                nb_delta[d] += 1
 
             ######################################################################
 
@@ -907,6 +1549,8 @@ class Expr(Task):
             f"accuracy_test {n_epoch} nb_total {test_nb_total} nb_correct {test_nb_correct} accuracy {(100.0*test_nb_correct)/test_nb_total:.02f}%"
         )
 
+        logger(f"main_test_accuracy {n_epoch} {test_nb_correct/test_nb_total}")
+
         nb_total = test_nb_delta.sum() + test_nb_missed
         for d in range(test_nb_delta.size(0)):
             logger(
@@ -952,3 +1596,470 @@ class Expr(Task):
 
 
 ######################################################################
+
+import grid
+
+
+class Grid(Task):
+    # Make a tensor from a list of strings
+    def str2tensor(self, descr):
+        token_descr = [s.strip().split(" ") for s in descr]
+        l = max([len(s) for s in token_descr])
+        token_descr = [s + ["#"] * (l - len(s)) for s in token_descr]
+        id_descr = [[self.token2id[u] for u in s] for s in token_descr]
+        return torch.tensor(id_descr, device=self.device)
+
+    # Make a list of strings from a tensor
+    def tensor2str(self, x):
+        return [" ".join([self.id2token[t.item()] for t in r]) for r in x]
+
+    # trim all the tensors in the tuple z to remove as much token from
+    # left and right in the first tensor. If z is a tuple, all its
+    # elements are trimed according to the triming for the first
+    def trim(self, z, token="#"):
+        n = self.token2id[token]
+        if type(z) == tuple:
+            x = z[0]
+            i = (1 - (F.pad(x, (1, 1), value=n) == n).min(0).values.long()).cumsum(0)
+            a, b = (i == 0).nonzero().max(), (i == i.max()).nonzero().min()
+            return tuple([t[:, a:b] for t in z])
+        else:
+            i = (1 - (F.pad(z, (1, 1), value=n) == n).min(0).values.long()).cumsum(0)
+            a, b = (i == 0).nonzero().max(), (i == i.max()).nonzero().min()
+            return z[:, a:b]
+
+    ######################
+
+    def __init__(
+        self,
+        nb_train_samples,
+        nb_test_samples,
+        batch_size,
+        size,
+        fraction_play=0.0,
+        logger=None,
+        device=torch.device("cpu"),
+    ):
+        super().__init__()
+
+        self.device = device
+        self.batch_size = batch_size
+        self.grid_factory = grid.GridFactory(size=size)
+        self.fraction_play = fraction_play
+
+        if logger is not None:
+            logger(
+                f"generating {nb_train_samples+nb_test_samples} samples (can take some time)"
+            )
+
+        self.train_descr = self.grid_factory.generate_samples(
+            nb=nb_train_samples,
+            fraction_play=fraction_play,
+            progress_bar=lambda r: tqdm.tqdm(r),
+        )
+
+        self.test_descr = self.grid_factory.generate_samples(
+            nb=nb_test_samples, fraction_play=0.0, progress_bar=lambda r: tqdm.tqdm(r)
+        )
+
+        if fraction_play > 0:
+            self.play_descr = self.grid_factory.generate_samples(
+                nb=25, fraction_play=1.0, progress_bar=lambda r: tqdm.tqdm(r)
+            )
+        else:
+            self.play_descr = []
+
+        # Build the tokenizer
+        tokens = set()
+        for d in [self.train_descr, self.test_descr, self.play_descr]:
+            for s in d:
+                for t in s.strip().split(" "):
+                    tokens.add(t)
+        # make this set a sorted list to get the same tensors given
+        # the same descr
+        tokens = list(tokens)
+        tokens.sort()
+        tokens = ["#"] + tokens
+        self.token2id = dict([(t, n) for n, t in enumerate(tokens)])
+        self.id2token = dict([(n, t) for n, t in enumerate(tokens)])
+        self.t_nul = self.token2id["#"]
+        self.t_true = self.token2id["true"]
+        self.t_false = self.token2id["false"]
+        # self.t_pipe = self.token2id["|"]
+
+        # Tokenize the train and test sets
+        self.train_input = self.str2tensor(self.train_descr)
+        self.test_input = self.str2tensor(self.test_descr)
+        self.play_input = (
+            None if len(self.play_descr) == 0 else self.str2tensor(self.play_descr)
+        )
+
+    def batches(self, split="train", nb_to_use=-1, desc=None):
+        assert split in {"train", "test"}
+        input = self.train_input if split == "train" else self.test_input
+        for batch in tqdm.tqdm(
+            input.split(self.batch_size), dynamic_ncols=True, desc=f"epoch-{split}"
+        ):
+            yield self.trim(batch)
+
+    def vocabulary_size(self):
+        return len(self.token2id)
+
+    def produce_results(
+        self, n_epoch, model, result_dir, logger, deterministic_synthesis
+    ):
+        correct = self.test_input[:1000]
+        result = correct.clone()
+        ar_mask = torch.logical_or(result == self.t_true, result == self.t_false).long()
+        result *= 1 - ar_mask  # paraaaaanoiaaaaaaa
+
+        logger(f"----------------------------------------------------------")
+
+        for e in self.tensor2str(result[:10]):
+            logger(f"test_before {e}")
+
+        masked_inplace_autoregression(
+            model,
+            self.batch_size,
+            result,
+            ar_mask,
+            deterministic_synthesis,
+            device=self.device,
+        )
+
+        logger(f"----------------------------------------------------------")
+
+        for e in self.tensor2str(result[:10]):
+            logger(f"test_after  {e}")
+
+        logger(f"----------------------------------------------------------")
+
+        nb_total = ar_mask.sum().item()
+        nb_correct = ((correct == result).long() * ar_mask).sum().item()
+
+        logger(f"test_performance {n_epoch} {nb_total=} {nb_correct=}")
+        logger(f"main_test_accuracy {n_epoch} {nb_correct / nb_total}")
+
+        if self.play_input is not None:
+            result = self.play_input.clone()
+            ar_mask = (result == self.t_pipe).long().cumsum(dim=1).clamp(max=1)
+            result *= 1 - ar_mask  # paraaaaanoiaaaaaaa
+
+            logger(f"----------------------------------------------------------")
+
+            for e in self.tensor2str(result[:10]):
+                logger(f"play_before {e}")
+
+            masked_inplace_autoregression(
+                model,
+                self.batch_size,
+                result,
+                ar_mask,
+                deterministic_synthesis,
+                device=self.device,
+            )
+
+            logger(f"----------------------------------------------------------")
+
+            for e in self.tensor2str(result[:10]):
+                logger(f"play_after  {e}")
+
+            logger(f"----------------------------------------------------------")
+
+
+######################################################################
+
+import qmlp
+
+
+class QMLP(Task):
+    ######################
+
+    def __init__(
+        self,
+        nb_train_samples,
+        nb_test_samples,
+        batch_size,
+        result_dir,
+        logger=None,
+        device=torch.device("cpu"),
+    ):
+        super().__init__()
+
+        self.device = device
+        self.batch_size = batch_size
+        self.nb_samples_per_mlp = 256
+
+        if logger is not None:
+            logger(
+                f"generating {nb_train_samples+nb_test_samples} samples (can take some time)"
+            )
+
+        seq, q_test_set, test_error = qmlp.generate_sequence_and_test_set(
+            nb_mlps=nb_train_samples + nb_test_samples,
+            nb_samples=self.nb_samples_per_mlp,
+            device=self.device,
+            batch_size=64,
+            nb_epochs=250,
+            nb_mlps_per_batch=1024,
+        )
+
+        self.train_input = seq[:nb_train_samples]
+        self.train_q_test_set = q_test_set[:nb_train_samples]
+        self.train_ref_test_errors = test_error[:nb_train_samples]
+        self.test_input = seq[nb_train_samples:]
+        self.test_q_test_set = q_test_set[nb_train_samples:]
+        self.test_ref_test_errors = test_error[nb_train_samples:]
+
+        filename = os.path.join(result_dir, f"train_errors_ref.dat")
+        with open(filename, "w") as f:
+            for e in self.train_ref_test_errors:
+                f.write(f"{e}\n")
+
+        filename = os.path.join(result_dir, f"test_errors_ref.dat")
+        with open(filename, "w") as f:
+            for e in self.test_ref_test_errors:
+                f.write(f"{e}\n")
+
+        self.nb_codes = max(self.train_input.max(), self.test_input.max()) + 1
+
+    def batches(self, split="train", nb_to_use=-1, desc=None):
+        assert split in {"train", "test"}
+        input = self.train_input if split == "train" else self.test_input
+        for batch in tqdm.tqdm(
+            input.split(self.batch_size), dynamic_ncols=True, desc=f"epoch-{split}"
+        ):
+            yield batch
+
+    def vocabulary_size(self):
+        return self.nb_codes
+
+    def produce_results(
+        self, n_epoch, model, result_dir, logger, deterministic_synthesis
+    ):
+        correct = self.test_input[:1000]
+        result = correct.clone()
+        ar_mask = (
+            torch.arange(result.size(1), device=result.device)
+            > self.nb_samples_per_mlp * 3 + 1
+        ).long()[None, :]
+        ar_mask = ar_mask.expand_as(result)
+        result *= 1 - ar_mask  # paraaaaanoiaaaaaaa
+
+        masked_inplace_autoregression(
+            model,
+            self.batch_size,
+            result,
+            ar_mask,
+            deterministic_synthesis,
+            device=self.device,
+        )
+
+        q_train_set = result[:, : self.nb_samples_per_mlp * 3]
+        q_params = result[:, self.nb_samples_per_mlp * 3 + 1 :]
+        error_test = qmlp.evaluate_q_params(q_params, self.test_q_test_set)
+
+        filename = os.path.join(result_dir, f"test_errors_{n_epoch:04d}.dat")
+        with open(filename, "w") as f:
+            for e in error_test:
+                f.write(f"{e}\n")
+
+
+######################################################################
+
+import greed
+
+
+class Greed(Task):
+    def __init__(
+        self,
+        nb_train_samples,
+        nb_test_samples,
+        batch_size,
+        height,
+        width,
+        T,
+        nb_walls,
+        nb_coins,
+        logger=None,
+        device=torch.device("cpu"),
+    ):
+        super().__init__()
+
+        self.batch_size = batch_size
+        self.device = device
+
+        self.world = greed.GreedWorld(height, width, T, nb_walls, nb_coins)
+
+        states, actions, rewards = self.world.generate_episodes(
+            nb_train_samples + nb_test_samples
+        )
+        seq = self.world.episodes2seq(states, actions, rewards)
+        self.train_input = seq[:nb_train_samples].to(self.device)
+        self.test_input = seq[nb_train_samples:].to(self.device)
+
+    def wipe_lookahead_rewards(self, batch):
+        t = torch.arange(batch.size(1), device=batch.device)[None, :]
+        u = torch.randint(batch.size(1), (batch.size(0), 1), device=batch.device)
+        lr_mask = (t <= u).long() * (
+            t % self.world.it_len == self.world.index_lookahead_reward
+        ).long()
+
+        return (
+            lr_mask * self.world.lookahead_reward2code(greed.REWARD_UNKNOWN)
+            + (1 - lr_mask) * batch
+        )
+
+    def batches(self, split="train", nb_to_use=-1, desc=None):
+        assert split in {"train", "test"}
+        input = self.train_input if split == "train" else self.test_input
+        if nb_to_use > 0:
+            input = input[:nb_to_use]
+        if desc is None:
+            desc = f"epoch-{split}"
+        for batch in tqdm.tqdm(
+            input.split(self.batch_size), dynamic_ncols=True, desc=desc
+        ):
+            yield self.wipe_lookahead_rewards(batch)
+
+    def vocabulary_size(self):
+        return self.world.nb_codes
+
+    def thinking_autoregression(
+        self, n_epoch, model, result_dir, logger, deterministic_synthesis, nmax=1000
+    ):
+        snapshots = []
+
+        def ar(result, ar_mask, logit_biases=None):
+            ar_mask = ar_mask.expand_as(result)
+            result *= 1 - ar_mask
+            masked_inplace_autoregression(
+                model,
+                self.batch_size,
+                result,
+                ar_mask,
+                deterministic_synthesis=deterministic_synthesis,
+                logit_biases=logit_biases,
+                device=self.device,
+                progress_bar_desc=None,
+            )
+            warnings.warn("keeping thinking snapshots", RuntimeWarning)
+            snapshots.append(result[:100].detach().clone())
+
+        # Generate iteration after iteration
+
+        result = self.test_input[:250].clone()
+        # Erase all the content but that of the first iteration
+        result[:, self.world.it_len :] = -1
+        # Set the lookahead_reward of the firs to UNKNOWN
+        result[:, self.world.index_lookahead_reward] = self.world.lookahead_reward2code(
+            greed.REWARD_UNKNOWN
+        )
+
+        t = torch.arange(result.size(1), device=result.device)[None, :]
+
+        for u in tqdm.tqdm(
+            range(0, result.size(1), self.world.it_len),
+            desc="thinking",
+        ):
+            # Generate the next state but keep the initial one, the
+            # lookahead_reward of previous iterations are set to
+            # UNKNOWN
+            if u > 0:
+                result[
+                    :, u + self.world.index_lookahead_reward
+                ] = self.world.lookahead_reward2code(greed.REWARD_UNKNOWN)
+                ar_mask = (t >= u + self.world.index_states).long() * (
+                    t < u + self.world.index_states + self.world.state_len
+                ).long()
+                ar(result, ar_mask)
+
+            # Generate the action and reward with lookahead_reward to +1
+            result[
+                :, u + self.world.index_lookahead_reward
+            ] = self.world.lookahead_reward2code(greed.REWARD_PLUS)
+            ar_mask = (t >= u + self.world.index_reward).long() * (
+                t <= u + self.world.index_action
+            ).long()
+            ar(result, ar_mask)
+
+            # Set the lookahead_reward to UNKNOWN for the next iterations
+            result[
+                :, u + self.world.index_lookahead_reward
+            ] = self.world.lookahead_reward2code(greed.REWARD_UNKNOWN)
+
+        filename = os.path.join(result_dir, f"test_thinking_compute_{n_epoch:04d}.txt")
+        with open(filename, "w") as f:
+            for n in range(snapshots[0].size(0)):
+                for s in snapshots:
+                    lr, s, a, r = self.world.seq2episodes(
+                        s[n : n + 1],
+                    )
+                    str = self.world.episodes2str(
+                        lr, s, a, r, unicode=True, ansi_colors=True
+                    )
+                    f.write(str)
+                f.write("\n\n")
+
+        # Saving the generated sequences
+
+        lr, s, a, r = self.world.seq2episodes(result)
+        str = self.world.episodes2str(lr, s, a, r, unicode=True, ansi_colors=True)
+
+        filename = os.path.join(result_dir, f"test_thinking_seq_{n_epoch:04d}.txt")
+        with open(filename, "w") as f:
+            f.write(str)
+            logger(f"wrote {filename}")
+
+    def produce_results(
+        self, n_epoch, model, result_dir, logger, deterministic_synthesis, nmax=1000
+    ):
+        result = self.wipe_lookahead_rewards(self.test_input[:250].clone())
+
+        # Saving the ground truth
+
+        lr, s, a, r = self.world.seq2episodes(
+            result,
+        )
+        str = self.world.episodes2str(lr, s, a, r, unicode=True, ansi_colors=True)
+
+        filename = os.path.join(result_dir, f"test_true_seq_{n_epoch:04d}.txt")
+        with open(filename, "w") as f:
+            f.write(str)
+            logger(f"wrote {filename}")
+
+        # Re-generating from the first frame
+
+        ar_mask = (
+            torch.arange(result.size(1), device=result.device) >= self.world.it_len
+        ).long()[None, :]
+        ar_mask = ar_mask.expand_as(result)
+        result *= 1 - ar_mask  # paraaaaanoiaaaaaaa
+
+        masked_inplace_autoregression(
+            model,
+            self.batch_size,
+            result,
+            ar_mask,
+            deterministic_synthesis,
+            device=self.device,
+        )
+
+        # Saving the generated sequences
+
+        lr, s, a, r = self.world.seq2episodes(
+            result,
+        )
+        str = self.world.episodes2str(lr, s, a, r, unicode=True, ansi_colors=True)
+
+        filename = os.path.join(result_dir, f"test_seq_{n_epoch:04d}.txt")
+        with open(filename, "w") as f:
+            f.write(str)
+            logger(f"wrote {filename}")
+
+        self.thinking_autoregression(
+            n_epoch, model, result_dir, logger, deterministic_synthesis, nmax
+        )
+
+
+######################################################################