75adbf657b57039d48244297cf9b373916b22e5c
[beaver.git] / mygpt.py
1 #!/usr/bin/env python
2
3 # Any copyright is dedicated to the Public Domain.
4 # https://creativecommons.org/publicdomain/zero/1.0/
5
6 # Written by Francois Fleuret <francois@fleuret.org>
7
8 import math
9
10 import torch
11
12 from torch import nn
13 from torch.nn import functional as F
14
15 ######################################################################
16
17 # A BracketedSequence is a BxTx... tensor with a first and a nb time
18 # steps to compute.
19
20 # Modules able to process it expect that they will have to process a
21 # first bracket starting at t=0, followed by a succession of brackets
22 # that move forward in time, do not overlap, and cover the axis T with
23 # no holes.
24 #
25 # Although it is more general, for a classical prompt-conditioned
26 # auto-regressive process it will be a first bracket starting at 0 and
27 # of arbitrary length for the "prompt", followed by brackets of length
28 # 1 for the successive tokens.
29 #
30 # Modules able to process brackets may implement a cache that is
31 # resetted when the input bracket starts at t=0
32
33
34 class BracketedSequence:
35     def __init__(self, x, first=None, nb=None):
36         self.x = x
37         self.first = 0 if first is None else first
38         self.nb = x.size(1) if nb is None else nb
39
40     def slice(self):
41         return self.x[:, self.first : self.first + self.nb]
42
43
44 ######################################################################
45
46
47 class WithResidual(nn.Module):
48     def __init__(self, *f):
49         super().__init__()
50         self.f = f[0] if len(f) == 1 else nn.Sequential(*f)
51
52     def forward(self, bs):
53         bs.x = bs.x + self.f(bs).x
54         return bs
55
56
57 ######################################################################
58
59
60 class CacheWrapper(nn.Module):
61     def __init__(self, *f):
62         super().__init__()
63         self.f = f[0] if len(f) == 1 else nn.Sequential(*f)
64
65     def forward(self, bs):
66         if bs.first == 0:
67             y = self.f(bs.slice())
68             self.cache_y = y.new(*((y.size(0), bs.x.size(1)) + y.size()[2:]))
69             self.cache_y[:, bs.first : bs.first + bs.nb] = y
70         else:
71             self.cache_y[:, bs.first : bs.first + bs.nb] = self.f(bs.slice())
72
73         bs.x = self.cache_y
74
75         return bs
76
77
78 ##############################
79
80
81 class AddPositionalEncoding(nn.Module):
82     def __init__(self, len_max):
83         super().__init__()
84         self.len_max = len_max
85
86     # [Vaswani et al 2018] PE_{t,2i} = sin(t/(L^{2i/D})), PE_{t,2i+1} = cos(t/(L^{2i/D}))
87
88     def forward(self, bs, order):  # NxTxD, T
89         if bs.first == 0:
90             t = (
91                 torch.arange(bs.x.size(1) + 1, dtype=bs.x.dtype, device=bs.x.device)[
92                     :, None
93                 ]
94                 - 1
95             )
96             j = torch.arange(bs.x.size(2) // 2, dtype=bs.x.dtype, device=bs.x.device)[
97                 None, :
98             ]
99             k = j % 2
100             pe = (
101                 torch.sin(
102                     t / (self.len_max ** ((j - k) / bs.x.size(2))) + math.pi / 2 * k
103                 )
104                 .unsqueeze(0)
105                 .expand(bs.x.size(0), -1, -1)
106             )
107
108             order_output = order + 1
109             order_input = F.pad(order + 1, (1, -1))
110
111             pe_input = pe.gather(
112                 1, order_input.unsqueeze(-1).expand(-1, -1, pe.size(-1))
113             )
114             pe_output = pe.gather(
115                 1, order_output.unsqueeze(-1).expand(-1, -1, pe.size(-1))
116             )
117
118             self.pe = torch.cat((pe_input, pe_output), 2)
119             self.cache_y = bs.x.new(bs.x.size())
120
121         self.cache_y[:, bs.first : bs.first + bs.nb] = (
122             bs.slice() + self.pe[:, bs.first : bs.first + bs.nb]
123         )
124
125         bs.x = self.cache_y
126
127         return bs
128
129
130 ##############################
131
132
133 class QKVAttention(nn.Module):
134     def __init__(
135         self, dim_in, dim_qk, dim_v, nb_heads=1, causal=False, attention_dropout=0.0
136     ):
137         super().__init__()
138
139         def randw(*d):
140             return nn.Parameter(torch.randn(*d) / math.sqrt(d[-1]))
141
142         self.causal = causal
143         self.attention_dropout = attention_dropout
144
145         self.w_q = randw(nb_heads, dim_qk, dim_in)
146         self.w_k = randw(nb_heads, dim_qk, dim_in)
147         self.w_v = randw(nb_heads, dim_v, dim_in)
148         self.w_o = randw(dim_v * nb_heads, dim_in)
149
150     def forward(self, bs_q):
151         x_q = bs_q.x
152
153         if bs_q.first == 0:
154             self.cache_k = x_q.new_zeros(
155                 x_q.size(0), self.w_k.size(0), x_q.size(1), self.w_k.size(1)
156             )
157             self.cache_v = x_q.new_zeros(
158                 x_q.size(0), self.w_v.size(0), x_q.size(1), self.w_v.size(1)
159             )
160             self.cache_y = x_q.new_zeros(x_q.size(0), x_q.size(1), self.w_o.size(1))
161
162         q = torch.einsum(
163             "ntc,hdc->nhtd", x_q[:, bs_q.first : bs_q.first + bs_q.nb], self.w_q
164         )
165         self.cache_k[:, :, bs_q.first : bs_q.first + bs_q.nb] = torch.einsum(
166             "ntc,hdc->nhtd", x_q[:, bs_q.first : bs_q.first + bs_q.nb], self.w_k
167         )
168         self.cache_v[:, :, bs_q.first : bs_q.first + bs_q.nb] = torch.einsum(
169             "ntc,hdc->nhtd", x_q[:, bs_q.first : bs_q.first + bs_q.nb], self.w_v
170         )
171
172         a = torch.einsum(
173             "nhtd,nhsd->nhts", q, self.cache_k[:, :, : bs_q.first + bs_q.nb]
174         ) / math.sqrt(self.w_q.size(1))
175
176         if self.causal:
177             if bs_q.first == 0:
178                 self.cache_attzero = (
179                     torch.arange(x_q.size(1), device=q.device)[None, None, :, None]
180                     < torch.arange(x_q.size(1), device=q.device)[None, None, None, :]
181                 )
182             a = a.masked_fill(
183                 self.cache_attzero[
184                     :, :, bs_q.first : bs_q.first + bs_q.nb, : bs_q.first + bs_q.nb
185                 ],
186                 float("-inf"),
187             )
188
189         a = a.softmax(dim=3)
190         a = F.dropout(a, self.attention_dropout, self.training)
191
192         y = torch.einsum(
193             "nhts,nhsd->nthd", a, self.cache_v[:, :, : bs_q.first + bs_q.nb]
194         ).flatten(2)
195
196         self.cache_y[:, bs_q.first : bs_q.first + bs_q.nb] = y @ self.w_o
197
198         bs_q.x = self.cache_y
199
200         return bs_q
201
202
203 ##############################
204
205
206 class MyGPT(nn.Module):
207     def __init__(
208         self,
209         vocabulary_size,
210         dim_model,
211         dim_keys,
212         dim_hidden,
213         nb_heads,
214         nb_blocks,
215         causal=False,
216         dropout=0.0,
217         len_max=1e5,
218     ):
219         super().__init__()
220
221         assert dim_model % nb_heads == 0
222
223         self.embedding = CacheWrapper(
224             nn.Embedding(vocabulary_size, dim_model), nn.Dropout(dropout)
225         )
226         self.pe = AddPositionalEncoding(len_max)
227
228         trunk_blocks = []
229
230         for b in range(nb_blocks):
231             trunk_blocks += [
232                 WithResidual(
233                     CacheWrapper(nn.LayerNorm((dim_model,))),
234                     QKVAttention(
235                         dim_in=dim_model,
236                         dim_qk=dim_keys,
237                         dim_v=dim_model // nb_heads,
238                         nb_heads=nb_heads,
239                         causal=causal,
240                         attention_dropout=dropout,
241                     ),
242                 ),
243                 WithResidual(
244                     CacheWrapper(
245                         nn.LayerNorm((dim_model,)),
246                         nn.Linear(in_features=dim_model, out_features=dim_hidden),
247                         nn.ReLU(),
248                         nn.Linear(in_features=dim_hidden, out_features=dim_model),
249                         nn.Dropout(dropout),
250                     ),
251                 ),
252             ]
253
254         self.trunk = nn.Sequential(*trunk_blocks)
255
256         self.readout = CacheWrapper(
257             nn.Linear(in_features=dim_model, out_features=vocabulary_size)
258         )
259
260         with torch.no_grad():
261             for m in self.modules():
262                 if isinstance(m, nn.Embedding):
263                     m.weight.normal_(mean=0, std=2e-2)
264                 elif isinstance(m, nn.LayerNorm):
265                     m.bias.zero_()
266                     m.weight.fill_(1.0)
267
268     def forward(self, bs, mode="standard", order=None):
269         bs = BracketedSequence(F.pad(bs.x, (1, -1)), bs.first, bs.nb)
270         if order is None:
271             order = torch.arange(bs.x.size(1), device=bs.x.device)[None, :].expand_as(
272                 bs.x
273             )
274         bs = self.embedding(bs)
275         bs = self.pe(bs, order)
276
277         if mode == "standard":
278             bs = self.trunk(bs)
279             bs = self.readout(bs)
280         elif mode == "head":
281             bs = self.trunk(bs)
282         elif mode == "deep":
283             r = []
284             for l in self.trunk:
285                 bs = l(bs)
286                 r += [bs.slice()]
287             bs = BracketedSequence(torch.cat(r, -1))
288         else:
289             raise ValueError(f"{mode=}")
290         return bs
291
292
293 ######################################################################
294
295 if __name__ == "__main__":
296     print("Basic check.")
297
298     vocabulary_size = 10
299     x = torch.randint(vocabulary_size, (9, 7))
300
301     model = MyGPT(
302         vocabulary_size=vocabulary_size,
303         dim_model=18,
304         dim_keys=50,
305         dim_hidden=100,
306         nb_heads=2,
307         nb_blocks=1,
308         dropout=0.1,
309     )
310
311     model.eval()
312
313     y1 = model(BracketedSequence(x)).x
314
315     y2 = torch.randn_like(y1)
316     for s in range(x.size(1)):
317         z = model(BracketedSequence(x, s, 1))
318         y2[:, s] = z.x[:, s]
319
320     # print(y1.max(dim = 2).values)
321     # print(y2.max(dim = 2).values)
322     print(f"error={((y1 - y2).norm() / (y1.norm() + y2.norm())).item()}")
323
324 ######################################################################