Update.
[picoclvr.git] / main.py
1 #!/usr/bin/env python
2
3 # Any copyright is dedicated to the Public Domain.
4 # https://creativecommons.org/publicdomain/zero/1.0/
5
6 # Written by Francois Fleuret <francois@fleuret.org>
7
8 # torch.backends.cuda.matmul.allow_tf23
9 # torch.autocast(torch.bfloat16)
10
11 import math, sys, argparse, time, tqdm, os
12
13 import torch, torchvision
14 from torch import nn
15 from torch.nn import functional as F
16
17 import mygpt, tensorstack
18
19 ######################################################################
20
21 if torch.cuda.is_available():
22     device = torch.device("cuda")
23     torch.backends.cuda.matmul.allow_tf32 = True
24 else:
25     device = torch.device("cpu")
26
27 ######################################################################
28
29 parser = argparse.ArgumentParser(
30     description="An implementation of GPT with cache.",
31     formatter_class=argparse.ArgumentDefaultsHelpFormatter,
32 )
33
34 parser.add_argument(
35     "--task", type=str, default="picoclvr", help="picoclvr, mnist, maze, snake"
36 )
37
38 parser.add_argument("--log_filename", type=str, default="train.log", help=" ")
39
40 parser.add_argument("--result_dir", type=str, default="results_default")
41
42 parser.add_argument("--seed", type=int, default=0)
43
44 parser.add_argument("--nb_epochs", type=int, default=None)
45
46 parser.add_argument("--batch_size", type=int, default=None)
47
48 parser.add_argument("--nb_train_samples", type=int, default=250000)
49
50 parser.add_argument("--nb_test_samples", type=int, default=10000)
51
52 parser.add_argument("--optim", type=str, default="adam")
53
54 parser.add_argument("--learning_rate", type=float, default=1e-4)
55
56 parser.add_argument("--learning_rate_schedule", type=str, default="10: 2e-5,30: 4e-6")
57
58 parser.add_argument("--dim_model", type=int, default=512)
59
60 parser.add_argument("--dim_keys", type=int, default=64)
61
62 parser.add_argument("--dim_hidden", type=int, default=2048)
63
64 parser.add_argument("--nb_heads", type=int, default=8)
65
66 parser.add_argument("--nb_blocks", type=int, default=12)
67
68 parser.add_argument("--dropout", type=float, default=0.1)
69
70 parser.add_argument("--deterministic_synthesis", action="store_true", default=False)
71
72 parser.add_argument("--no_checkpoint", action="store_true", default=False)
73
74 parser.add_argument("--overwrite_results", action="store_true", default=False)
75
76 parser.add_argument("--checkpoint_name", type=str, default="checkpoint.pth")
77
78 ##############################
79 # picoclvr options
80
81 parser.add_argument("--picoclvr_nb_colors", type=int, default=5)
82
83 parser.add_argument("--picoclvr_height", type=int, default=12)
84
85 parser.add_argument("--picoclvr_width", type=int, default=16)
86
87 parser.add_argument("--picocvlr_prune_properties", type=str, default="none")
88
89 ##############################
90 # Maze options
91
92 parser.add_argument("--maze_height", type=int, default=13)
93
94 parser.add_argument("--maze_width", type=int, default=21)
95
96 parser.add_argument("--maze_nb_walls", type=int, default=15)
97
98 ##############################
99 # Snake options
100
101 parser.add_argument("--snake_height", type=int, default=6)
102
103 parser.add_argument("--snake_width", type=int, default=8)
104
105 parser.add_argument("--snake_nb_colors", type=int, default=5)
106
107 parser.add_argument("--snake_length", type=int, default=200)
108
109 ######################################################################
110
111 args = parser.parse_args()
112
113 assert args.picocvlr_prune_properties in {"none", "train+eval", "eval"}
114
115 try:
116     os.mkdir(args.result_dir)
117 except FileExistsError:
118     if not args.overwrite_results:
119         print(f"result directory {args.result_dir} already exists")
120         exit(1)
121
122 log_file = open(os.path.join(args.result_dir, args.log_filename), "a")
123
124 if args.seed >= 0:
125     # torch.backends.cudnn.deterministic = True
126     # torch.backends.cudnn.benchmark = False
127     # torch.use_deterministic_algorithms(True)
128     torch.manual_seed(args.seed)
129     if torch.cuda.is_available():
130         torch.cuda.manual_seed_all(args.seed)
131
132 ######################################################################
133
134 default_args = {
135     "picoclvr": {
136         "nb_epochs": 25,
137         "batch_size": 25,
138     },
139     "mnist": {
140         "nb_epochs": 25,
141         "batch_size": 10,
142     },
143     "maze": {
144         "nb_epochs": 25,
145         "batch_size": 25,
146     },
147     "snake": {
148         "nb_epochs": 5,
149         "batch_size": 25,
150     },
151 }
152
153 if args.task in default_args:
154     for k, v in default_args[args.task].items():
155         if getattr(args, k) is None:
156             setattr(args, k, v)
157
158 ######################################################################
159
160
161 def log_string(s):
162     t = time.strftime("%Y%m%d-%H:%M:%S ", time.localtime())
163
164     if log_file is not None:
165         log_file.write(t + s + "\n")
166         log_file.flush()
167
168     print(t + s)
169     sys.stdout.flush()
170
171
172 for n in vars(args):
173     log_string(f"args.{n} {getattr(args, n)}")
174
175 ######################################################################
176
177
178 # ra_mask is boolean, with 1s on the values to generate
179
180
181 def masked_inplace_autoregression(
182     model,
183     batch_size,
184     input,
185     ar_mask,
186     forbidden_tokens=None,
187     progress_bar_desc="autoregression",
188     device=torch.device("cpu"),
189 ):
190     # p = logits.softmax(1)
191     # entropy[:,s]= p.xlogy(p).sum(1) / math.log(2)
192     batches = zip(input.split(batch_size), ar_mask.split(batch_size))
193     if progress_bar_desc is not None:
194         tqdm.tqdm(
195             batches,
196             dynamic_ncols=True,
197             desc=progress_bar_desc,
198             total=input.size(0) // batch_size,
199         )
200     for input, ar_mask in batches:
201         i = (ar_mask.sum(0) > 0).nonzero()
202         if i.min() > 0:
203             model(
204                 mygpt.BracketedSequence(input, 0, i.min())
205             )  # Needed to initialize the model's cache
206         for s in range(i.min(), i.max() + 1):
207             output = model(mygpt.BracketedSequence(input, s, 1)).x
208             logits = output[:, s]
209             if forbidden_tokens is not None:
210                 logits = logits.masked_fill(forbidden_tokens, float("-inf"))
211             if args.deterministic_synthesis:
212                 t_next = logits.argmax(1)
213             else:
214                 dist = torch.distributions.categorical.Categorical(logits=logits)
215                 t_next = dist.sample()
216             input[:, s] = ar_mask[:, s] * t_next + (1 - ar_mask[:, s]) * input[:, s]
217
218
219 ######################################################################
220
221
222 class Task:
223     def batches(self, split="train"):
224         pass
225
226     def vocabulary_size(self):
227         pass
228
229     def produce_results(self, n_epoch, model):
230         pass
231
232
233 ######################################################################
234
235 import picoclvr
236
237
238 class TaskPicoCLVR(Task):
239     # Make a tensor from a list of strings
240     def tensorize(self, descr):
241         token_descr = [s.strip().split(" ") for s in descr]
242         l = max([len(s) for s in token_descr])
243         token_descr = [s + ["<nul>"] * (l - len(s)) for s in token_descr]
244         id_descr = [[self.token2id[u] for u in s] for s in token_descr]
245         return torch.tensor(id_descr, device=self.device)
246
247     # Make a list of strings from a tensor
248     def detensorize(self, x):
249         return [" ".join([self.id2token[t.item()] for t in r]) for r in x]
250
251     # trim all the tensors in the tuple z to remove as much token from
252     # left and right in the first tensor. If z is a tuple, all its
253     # elements are trimed according to the triming for the first
254     def trim(self, z, token="<nul>"):
255         n = self.token2id[token]
256         if type(z) == tuple:
257             x = z[0]
258             i = (1 - (F.pad(x, (1, 1), value=n) == n).min(0).values.long()).cumsum(0)
259             a, b = (i == 0).nonzero().max(), (i == i.max()).nonzero().min()
260             return tuple([t[:, a:b] for t in z])
261         else:
262             i = (1 - (F.pad(z, (1, 1), value=n) == n).min(0).values.long()).cumsum(0)
263             a, b = (i == 0).nonzero().max(), (i == i.max()).nonzero().min()
264             return z[:, a:b]
265
266     ######################
267     # Not the cleanest part of the code
268
269     # Extract the last image of each sequence, from the last <img>
270     # included, and set to <nul> all the tokens from the beginning of
271     # that image to the end
272     def excise_last_image(self, input):
273         t_img, t_nul = self.token2id["<img>"], self.token2id["<nul>"]
274         nb_img_tokens = self.height * self.width + 1
275
276         input = input.clone()
277         t = (input == t_img).long()
278         tail_masks = (t.cumsum(dim=1) == t.sum(dim=1, keepdim=True)).long()
279         i = (t * tail_masks).nonzero(as_tuple=True)
280         j = (
281             i[0][:, None],
282             i[1][:, None] + torch.arange(nb_img_tokens, device=input.device)[None, :],
283         )
284         images = self.trim(input[j])
285         input[j] = t_nul
286         loss_masks = 1 - tail_masks
287         input, loss_masks = self.trim((input, loss_masks))
288         return input, loss_masks, images
289
290     def add_true_image(self, input, images, loss_masks):
291         t_nul = self.token2id["<nul>"]
292         nb_img_tokens = self.height * self.width + 1
293         input = F.pad(input, (0, nb_img_tokens), value=t_nul)
294         loss_masks = F.pad(loss_masks, (0, nb_img_tokens), value=0)
295         t = (input == t_nul).long()
296         i = (t.cumsum(dim=1) == 1).nonzero(as_tuple=True)
297         j = (
298             i[0][:, None],
299             i[1][:, None] + torch.arange(nb_img_tokens, device=input.device)[None, :],
300         )
301         input[j] = images
302         loss_masks[j] = 1
303         input, loss_masks = self.trim((input, loss_masks))
304         return input, loss_masks
305
306     def add_generated_image(self, input, loss_masks, model):
307         t_img, t_nul = self.token2id["<img>"], self.token2id["<nul>"]
308         nb_img_tokens = self.height * self.width + 1
309
310         input = F.pad(input, (0, nb_img_tokens), value=t_nul)
311         loss_masks = F.pad(loss_masks, (0, nb_img_tokens), value=0)
312         t = (input == t_nul).long()
313         i = (t.cumsum(dim=1) == 1).nonzero(as_tuple=True)
314         input[i] = t_img
315
316         j = (
317             i[0][:, None],
318             i[1][:, None]
319             + 1
320             + torch.arange(nb_img_tokens - 1, device=input.device)[None, :],
321         )
322         ar_masks = input.new_zeros(input.size(), dtype=torch.int64)
323         ar_masks[j] = 1
324         forbidden_tokens = (
325             torch.arange(self.vocabulary_size(), device=input.device) == t_nul
326         )
327         with torch.autograd.no_grad():
328             t = model.training
329             model.eval()
330             masked_inplace_autoregression(
331                 model,
332                 self.batch_size,
333                 input,
334                 ar_masks,
335                 forbidden_tokens,
336                 progress_bar_desc=None,
337                 device=self.device,
338             )
339             model.train(t)
340
341         input, loss_masks = self.trim((input, loss_masks))
342
343         return input, loss_masks
344
345     ######################
346
347     def __init__(
348         self,
349         nb_train_samples,
350         nb_test_samples,
351         batch_size,
352         height,
353         width,
354         nb_colors=5,
355         device=torch.device("cpu"),
356         pruner_train=None,
357         pruner_eval=None,
358     ):
359         def generate_descr(nb, cache_suffix, pruner):
360             return picoclvr.generate(
361                 nb,
362                 height=self.height,
363                 width=self.width,
364                 nb_colors=nb_colors,
365                 pruner=pruner,
366             )
367
368         self.height = height
369         self.width = width
370         self.batch_size = batch_size
371         self.device = device
372         self.pruner_train = pruner_train
373         self.pruner_eval = pruner_eval
374
375         param = {
376             "nb_train_samples": nb_train_samples,
377             "nb_test_samples": nb_test_samples,
378             "height": height,
379             "width": width,
380             "nb_colors": nb_colors,
381             "batch_size": batch_size,
382             "rng_state": list(torch.get_rng_state()),
383         }
384
385         log_string(
386             f"generating {nb_train_samples+nb_test_samples} samples (can take some time)"
387         )
388         self.train_descr = generate_descr(
389             nb_train_samples, "train", pruner=self.pruner_train
390         )
391         self.test_descr = generate_descr(nb_test_samples, "test", pruner=None)
392
393         # Build the tokenizer
394         tokens = {"<nul>", "<img>"}
395         for d in [self.train_descr, self.test_descr]:
396             for s in d:
397                 for t in s.strip().split(" "):
398                     tokens.add(t)
399         # make this set a sorted list to get the same tensors given
400         # the same descr
401         tokens = list(tokens)
402         tokens.sort()
403         self.token2id = dict([(t, n) for n, t in enumerate(tokens)])
404         self.id2token = dict([(n, t) for n, t in enumerate(tokens)])
405
406         # Tokenize the train and test sets
407         self.train_input = self.tensorize(self.train_descr)
408         self.test_input = self.tensorize(self.test_descr)
409
410     def batches(self, split="train"):
411         assert split in {"train", "test"}
412         input = self.train_input if split == "train" else self.test_input
413         for batch in tqdm.tqdm(
414             input.split(self.batch_size), dynamic_ncols=True, desc=f"epoch-{split}"
415         ):
416             yield self.trim(batch)
417
418     def vocabulary_size(self):
419         return len(self.token2id)
420
421     def compute_missing_properties(self, n_epoch, model, pruner=None):
422         acc_nb_requested_properties = []
423         acc_nb_missing_properties = []
424         acc_nb_results = 0
425
426         for input in tqdm.tqdm(
427             self.test_input.split(self.batch_size),
428             dynamic_ncols=True,
429             desc=f"test-properties",
430         ):
431             tape, loss_masks, _ = self.excise_last_image(input)
432             tape, loss_masks = self.add_generated_image(tape, loss_masks, model)
433             result_descr = self.detensorize(tape)
434             np = picoclvr.nb_properties(
435                 result_descr,
436                 height=self.height,
437                 width=self.width,
438                 pruner=pruner,
439             )
440             nb_requested_properties, _, nb_missing_properties = zip(*np)
441             acc_nb_requested_properties += nb_requested_properties
442             acc_nb_missing_properties += nb_missing_properties
443             acc_nb_results += len(result_descr)
444
445         nb_requested_properties = sum(acc_nb_requested_properties)
446         nb_missing_properties = sum(acc_nb_missing_properties)
447
448         prefix = "" if pruner is None else "pruned_"
449         log_string(f"nb_{prefix}samples {n_epoch} {acc_nb_results}")
450         log_string(
451             f"property_{prefix}nb {n_epoch} requested {sum(acc_nb_requested_properties)} missing {sum(acc_nb_missing_properties)}"
452         )
453         log_string(
454             f"property_{prefix}miss {n_epoch} {100*nb_missing_properties/nb_requested_properties:.02f}%"
455         )
456
457     ######################################################################
458
459     def produce_results(self, n_epoch, model):
460         self.compute_missing_properties(n_epoch, model)
461
462         if self.pruner_eval is not None:
463             self.compute_missing_properties(n_epoch, model, self.pruner_eval)
464
465         nb_tokens_to_generate = self.height * self.width + 3
466         result_descr = []
467         nb_per_primer = 8
468         primer = []
469
470         for primer_descr in [
471             "red above green <sep> green top <sep> blue right of red",
472             "there is red <sep> there is yellow <sep> there is blue",
473             "red below yellow <sep> yellow below green <sep> green below blue <sep> red right <sep> yellow left <sep> green right <sep> blue left",
474             "green bottom <sep> yellow bottom <sep> green left of blue <sep> yellow right of blue <sep> blue top",
475         ]:
476             primer += [primer_descr] * nb_per_primer
477
478         tape = self.tensorize(primer)
479         loss_masks = 1 - (tape == self.token2id["<nul>"]).long()
480         tape, loss_masks = self.add_generated_image(tape, loss_masks, model)
481         result_descr = self.detensorize(tape)
482
483         np = picoclvr.nb_properties(result_descr, height=self.height, width=self.width)
484
485         acc_nb_requested_properties, _, acc_nb_missing_properties = zip(*np)
486         acc_nb_results = len(result_descr)
487
488         nb_requested_properties = sum(acc_nb_requested_properties)
489         nb_missing_properties = sum(acc_nb_missing_properties)
490
491         prefix = "demo_"
492         log_string(f"nb_{prefix}samples {n_epoch} {acc_nb_results}")
493         log_string(
494             f"property_{prefix}nb {n_epoch} requested {sum(acc_nb_requested_properties)} missing {sum(acc_nb_missing_properties)}"
495         )
496         log_string(
497             f"property_{prefix}miss {n_epoch} {100*nb_missing_properties/nb_requested_properties:.02f}%"
498         )
499
500         img = picoclvr.descr2img(result_descr, height=self.height, width=self.width)
501
502         if img.dim() == 5:
503             if img.size(1) == 1:
504                 img = F.pad(img.squeeze(1), pad=(1, 1, 1, 1), value=64)
505             else:
506                 img = torch.cat(
507                     [
508                         torchvision.utils.make_grid(x, padding=1, pad_value=64)[None]
509                         for x in img
510                     ],
511                     0,
512                 )
513
514         image_name = os.path.join(args.result_dir, f"picoclvr_result_{n_epoch:04d}.png")
515         torchvision.utils.save_image(
516             img / 255.0, image_name, nrow=nb_per_primer, padding=1, pad_value=0.0
517         )
518         log_string(f"wrote {image_name}")
519
520
521 ######################################################################
522
523
524 class TaskMNIST(Task):
525     def __init__(self, batch_size, device=torch.device("cpu")):
526         self.device = device
527         self.batch_size = batch_size
528
529     def batches(self, split="train"):
530         assert split in {"train", "test"}
531         data_set = torchvision.datasets.MNIST(
532             root="./data", train=(split == "train"), download=True
533         )
534         data_input = data_set.data.view(-1, 28 * 28).long()
535         if args.nb_train_samples is not None:
536             data_input = data_input[: args.nb_train_samples]
537         for batch in tqdm.tqdm(
538             data_input.split(self.batch_size), desc=f"epoch-{split}"
539         ):
540             yield batch
541
542     def vocabulary_size(self):
543         return 256
544
545     def produce_results(self, n_epoch, model):
546         results = torch.empty(64, 28 * 28, device=self.device, dtype=torch.int64)
547         ar_mask = torch.full_like(results, 1)
548         masked_inplace_autoregression(
549             model, self.batch_size, results, ar_mask, device=self.device
550         )
551         image_name = os.path.join(args.result_dir, f"mnist_result_{n_epoch:04d}.png")
552         torchvision.utils.save_image(
553             1 - results.reshape(-1, 1, 28, 28) / 255.0,
554             image_name,
555             nrow=16,
556             pad_value=0.8,
557         )
558         log_string(f"wrote {image_name}")
559
560
561 ######################################################################
562
563 import maze
564
565
566 class TaskMaze(Task):
567     def map2seq(self, *m):
568         return torch.cat([x.flatten(1) for x in m], 1)
569
570     def seq2map(self, s):
571         s = s.reshape(s.size(0), -1, self.height, self.width)
572         return (s[:, k] for k in range(s.size(1)))
573
574     def __init__(
575         self,
576         nb_train_samples,
577         nb_test_samples,
578         batch_size,
579         height,
580         width,
581         nb_walls,
582         device=torch.device("cpu"),
583     ):
584         self.batch_size = batch_size
585         self.height = height
586         self.width = width
587         self.device = device
588
589         train_mazes, train_paths, _ = maze.create_maze_data(
590             nb_train_samples,
591             height=height,
592             width=width,
593             nb_walls=nb_walls,
594             progress_bar=lambda x: tqdm.tqdm(x, dynamic_ncols=True, desc=f"data-train"),
595         )
596         self.train_input = self.map2seq(train_mazes.to(device), train_paths.to(device))
597
598         test_mazes, test_paths, _ = maze.create_maze_data(
599             nb_test_samples,
600             height=height,
601             width=width,
602             nb_walls=nb_walls,
603             progress_bar=lambda x: tqdm.tqdm(x, dynamic_ncols=True, desc=f"data-test"),
604         )
605         self.test_input = self.map2seq(test_mazes.to(device), test_paths.to(device))
606
607         self.nb_codes = max(self.train_input.max(), self.test_input.max()) + 1
608
609     def batches(self, split="train", nb_to_use=-1, desc=None):
610         assert split in {"train", "test"}
611         input = self.train_input if split == "train" else self.test_input
612         if nb_to_use > 0:
613             input = input[:nb_to_use]
614         if desc is None:
615             desc = f"epoch-{split}"
616         for batch in tqdm.tqdm(
617             input.split(self.batch_size), dynamic_ncols=True, desc=desc
618         ):
619             yield batch
620
621     def vocabulary_size(self):
622         return self.nb_codes
623
624     def compute_error(self, model, split="train", nb_to_use=-1):
625         nb_total, nb_correct = 0, 0
626         count = torch.zeros(
627             self.width * self.height,
628             self.width * self.height,
629             device=self.device,
630             dtype=torch.int64,
631         )
632         for input in tqdm.tqdm(
633             task.batches(split, nb_to_use),
634             dynamic_ncols=True,
635             desc=f"test-mazes",
636         ):
637             result = input.clone()
638             ar_mask = result.new_zeros(result.size())
639             ar_mask[:, self.height * self.width :] = 1
640             result *= 1 - ar_mask
641             masked_inplace_autoregression(
642                 model,
643                 self.batch_size,
644                 result,
645                 ar_mask,
646                 progress_bar_desc=None,
647                 device=self.device,
648             )
649             mazes, paths = self.seq2map(result)
650             path_correctness = maze.path_correctness(mazes, paths)
651             nb_correct += path_correctness.long().sum()
652             nb_total += mazes.size(0)
653
654             optimal_path_lengths = (
655                 (input[:, self.height * self.width :] == maze.v_path).long().sum(1)
656             )
657             predicted_path_lengths = (
658                 (result[:, self.height * self.width :] == maze.v_path).long().sum(1)
659             )
660             optimal_path_lengths = optimal_path_lengths[path_correctness]
661             predicted_path_lengths = predicted_path_lengths[path_correctness]
662             count[optimal_path_lengths, predicted_path_lengths] += 1
663
664         if count.max() == 0:
665             count = None
666         else:
667             count = count[
668                 : count.sum(1).nonzero().max() + 1, : count.sum(0).nonzero().max() + 1
669             ]
670
671         return nb_total, nb_correct, count
672
673     def produce_results(self, n_epoch, model):
674         with torch.autograd.no_grad():
675             t = model.training
676             model.eval()
677
678             train_nb_total, train_nb_correct, count = self.compute_error(
679                 model, "train", nb_to_use=1000
680             )
681             log_string(
682                 f"accuracy_train nb_total {train_nb_total} nb_correct {train_nb_correct} accuracy {(100.0*train_nb_correct)/train_nb_total:.02f}%"
683             )
684
685             test_nb_total, test_nb_correct, count = self.compute_error(
686                 model, "test", nb_to_use=1000
687             )
688             log_string(
689                 f"accuracy_test nb_total {test_nb_total} nb_correct {test_nb_correct} accuracy {(100.0*test_nb_correct)/test_nb_total:.02f}%"
690             )
691
692             if count is not None:
693                 proportion_optimal = count.diagonal().sum().float() / count.sum()
694                 log_string(f"proportion_optimal_test {proportion_optimal*100:.02f}%")
695                 with open(
696                     os.path.join(args.result_dir, f"maze_result_{n_epoch:04d}.txt"), "w"
697                 ) as f:
698                     for i in range(count.size(0)):
699                         for j in range(count.size(1)):
700                             eol = " " if j < count.size(1) - 1 else "\n"
701                             f.write(f"{count[i,j]}{eol}")
702
703             input = self.test_input[:48]
704             result = input.clone()
705             ar_mask = result.new_zeros(result.size())
706             ar_mask[:, self.height * self.width :] = 1
707             result *= 1 - ar_mask
708             masked_inplace_autoregression(
709                 model, self.batch_size, result, ar_mask, device=self.device
710             )
711
712             mazes, paths = self.seq2map(input)
713             _, predicted_paths = self.seq2map(result)
714
715             filename = os.path.join(args.result_dir, f"maze_result_{n_epoch:04d}.png")
716             maze.save_image(
717                 filename,
718                 mazes=mazes,
719                 target_paths=paths,
720                 predicted_paths=predicted_paths,
721                 path_correct=maze.path_correctness(mazes, predicted_paths),
722                 path_optimal=maze.path_optimality(paths, predicted_paths),
723             )
724             log_string(f"wrote {filename}")
725
726             model.train(t)
727
728
729 ######################################################################
730
731
732 import snake
733
734
735 class TaskSnake(Task):
736     def __init__(
737         self,
738         nb_train_samples,
739         nb_test_samples,
740         batch_size,
741         height,
742         width,
743         nb_colors,
744         length,
745         prompt_length,
746         device=torch.device("cpu"),
747     ):
748         self.batch_size = batch_size
749         self.height = height
750         self.width = width
751         self.device = device
752         self.prompt_length = prompt_length
753
754         self.train_input, self.train_prior_visits, _, _ = snake.generate_sequences(
755             nb_train_samples,
756             height,
757             width,
758             nb_colors,
759             length,
760             prompt_length,
761             self.device,
762         )
763         self.test_input, self.test_prior_visits, _, _ = snake.generate_sequences(
764             nb_test_samples,
765             height,
766             width,
767             nb_colors,
768             length,
769             prompt_length,
770             self.device,
771         )
772
773         self.nb_codes = max(self.train_input.max(), self.test_input.max()) + 1
774
775     def batches(self, split="train", nb_to_use=-1, desc=None):
776         assert split in {"train", "test"}
777         input = self.train_input if split == "train" else self.test_input
778         if nb_to_use > 0:
779             input = input[:nb_to_use]
780         if desc is None:
781             desc = f"epoch-{split}"
782         for batch in tqdm.tqdm(
783             input.split(self.batch_size), dynamic_ncols=True, desc=desc
784         ):
785             yield batch
786
787     def vocabulary_size(self):
788         return self.nb_codes
789
790     def produce_results(self, n_epoch, model):
791         with torch.autograd.no_grad():
792             t = model.training
793             model.eval()
794
795             def compute_nb_correct(input, prior_visits):
796                 result = input.clone()
797                 i = torch.arange(result.size(1), device=result.device)[None, :]
798                 ar_mask = (
799                     torch.logical_and(i >= self.prompt_length * 2, i % 2 == 0)
800                     .long()
801                     .expand_as(result)
802                 )
803                 result *= 1 - ar_mask
804
805                 # snake.solver(result,ar_mask)
806
807                 masked_inplace_autoregression(
808                     model, self.batch_size, result, ar_mask, device=self.device
809                 )
810
811                 nb_total = ((prior_visits > 0) * ar_mask).sum()
812
813                 nb_correct = (
814                     (result == input).long() * (prior_visits > 0) * ar_mask
815                 ).sum()
816
817                 # nb_total = result.size(0)
818                 # nb_correct = ((result - input).abs().sum(1) == 0).sum()
819
820                 return nb_total, nb_correct
821
822             # train_nb_total, train_nb_correct = compute_nb_correct(
823             # self.train_input, self.train_prior_visits
824             # )
825
826             # log_string(
827             # f"accuracy_train nb_total {train_nb_total} nb_correct {train_nb_correct} accuracy {(100.0*train_nb_correct)/train_nb_total:.02f}%"
828             # )
829
830             test_nb_total, test_nb_correct = compute_nb_correct(
831                 self.test_input[:1000], self.test_prior_visits[:1000]
832             )
833
834             log_string(
835                 f"accuracy_test nb_total {test_nb_total} nb_correct {test_nb_correct} accuracy {(100.0*test_nb_correct)/test_nb_total:.02f}%"
836             )
837
838             model.train(t)
839
840
841 ######################################################################
842
843
844 def picoclvr_pruner_horizontal_green(p):
845     return not ("green" in p and ("left" in p or "right" in p))
846
847
848 picoclvr_pruner_train = (
849     picoclvr_pruner_horizontal_green
850     if args.picocvlr_prune_properties in {"train+eval"}
851     else None
852 )
853
854 picoclvr_pruner_eval = (
855     (lambda p: not picoclvr_pruner_horizontal_green(p))
856     if args.picocvlr_prune_properties in {"train+eval", "eval"}
857     else None
858 )
859
860 ######################################################################
861
862 if args.task == "picoclvr":
863     task = TaskPicoCLVR(
864         nb_train_samples=args.nb_train_samples,
865         nb_test_samples=args.nb_test_samples,
866         batch_size=args.batch_size,
867         height=args.picoclvr_height,
868         width=args.picoclvr_width,
869         nb_colors=args.picoclvr_nb_colors,
870         device=device,
871         pruner_train=picoclvr_pruner_train,
872         pruner_eval=picoclvr_pruner_eval,
873     )
874
875 elif args.task == "mnist":
876     task = TaskMNIST(
877         batch_size=args.batch_size,
878         device=device,
879     )
880
881 elif args.task == "maze":
882     task = TaskMaze(
883         nb_train_samples=args.nb_train_samples,
884         nb_test_samples=args.nb_test_samples,
885         batch_size=args.batch_size,
886         height=args.maze_height,
887         width=args.maze_width,
888         nb_walls=args.maze_nb_walls,
889         device=device,
890     )
891
892 elif args.task == "snake":
893     task = TaskSnake(
894         nb_train_samples=args.nb_train_samples,
895         nb_test_samples=args.nb_test_samples,
896         batch_size=args.batch_size,
897         height=args.snake_height,
898         width=args.snake_width,
899         nb_colors=args.snake_nb_colors,
900         length=args.snake_length,
901         prompt_length=args.snake_length // 2,
902         device=device,
903     )
904
905 else:
906     raise ValueError(f"Unknown task {args.task}")
907
908 ######################################################################
909
910 log_string(f"device {device}")
911
912 vocabulary_size = task.vocabulary_size()
913
914 log_string(f"vocabulary_size {vocabulary_size}")
915
916 ##############################
917
918 model = mygpt.MyGPT(
919     vocabulary_size=vocabulary_size,
920     dim_model=args.dim_model,
921     dim_keys=args.dim_keys,
922     dim_hidden=args.dim_hidden,
923     nb_heads=args.nb_heads,
924     nb_blocks=args.nb_blocks,
925     causal=True,
926     dropout=args.dropout,
927 )
928
929 model.to(device)
930
931 nb_parameters = sum(p.numel() for p in model.parameters())
932 log_string(f"nb_parameters {nb_parameters} ({int(nb_parameters/1e6)}M)")
933
934 ######################################################################
935
936 nb_epochs_finished = 0
937
938 if args.no_checkpoint:
939     log_string(f"not trying to load checkpoint.")
940
941 else:
942     try:
943         checkpoint_name = os.path.join(args.result_dir, args.checkpoint_name)
944         checkpoint = torch.load(checkpoint_name)
945         nb_epochs_finished = checkpoint["nb_epochs_finished"]
946         model.load_state_dict(checkpoint["model_state"])
947         torch.set_rng_state(checkpoint["rng_state"])
948         if torch.cuda.is_available():
949             torch.cuda.set_rng_state(checkpoint["cuda_rng_state"])
950
951         log_string(f"checkpoint loaded with {nb_epochs_finished} epochs finished.")
952
953     except FileNotFoundError:
954         log_string("starting from scratch.")
955
956     except:
957         log_string("error when loading the checkpoint.")
958         exit(1)
959
960 ######################################################################
961
962 nb_epochs = args.nb_epochs if args.nb_epochs > 0 else nb_epochs_default
963
964 token_count = 0
965 for input in task.batches(split="train"):
966     token_count += F.one_hot(input, num_classes=task.vocabulary_size()).sum((0, 1))
967 token_probas = token_count / token_count.sum()
968 entropy = -torch.xlogy(token_probas, token_probas).sum()
969 train_set_perplexity = math.exp(entropy)
970
971 ##############################
972
973 if args.learning_rate_schedule == "cos":
974     learning_rate_schedule = {}
975     for n_epoch in range(args.nb_epochs):
976         u = n_epoch / args.nb_epochs * math.pi
977         learning_rate_schedule[n_epoch] = args.learning_rate * 0.5 * (1 + math.cos(u))
978 else:
979     u = {
980         int(k): float(v)
981         for k, v in [
982             tuple(x.split(":")) for x in args.learning_rate_schedule.split(",")
983         ]
984     }
985
986     learning_rate_schedule = {}
987     learning_rate = args.learning_rate
988     for n_epoch in range(args.nb_epochs):
989         if n_epoch in u:
990             learning_rate = u[n_epoch]
991         learning_rate_schedule[n_epoch] = learning_rate
992
993 log_string(f"learning_rate_schedule {learning_rate_schedule}")
994
995 ##############################
996
997 nb_samples_seen = 0
998
999 if nb_epochs_finished >= nb_epochs:
1000     task.produce_results(nb_epochs_finished, model)
1001
1002 for n_epoch in range(nb_epochs_finished, nb_epochs):
1003     learning_rate = learning_rate_schedule[n_epoch]
1004
1005     log_string(f"learning_rate {learning_rate}")
1006
1007     if args.optim == "sgd":
1008         optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
1009     elif args.optim == "adam":
1010         optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
1011     elif args.optim == "adamw":
1012         optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate)
1013     else:
1014         raise ValueError(f"Unknown optimizer {args.optim}.")
1015
1016     model.train()
1017
1018     nb_train_samples, acc_train_loss = 0, 0.0
1019
1020     for input in task.batches(split="train"):
1021         input = input.to(device)
1022         output = model(mygpt.BracketedSequence(input)).x
1023         loss = F.cross_entropy(output.transpose(1, 2), input)
1024         acc_train_loss += loss.item() * input.size(0)
1025         nb_train_samples += input.size(0)
1026         nb_samples_seen += input.size(0)
1027
1028         optimizer.zero_grad()
1029         loss.backward()
1030         optimizer.step()
1031
1032     with torch.autograd.no_grad():
1033         model.eval()
1034
1035         nb_test_samples, acc_test_loss = 0, 0.0
1036
1037         for input in task.batches(split="test"):
1038             input = input.to(device)
1039
1040             output = model(mygpt.BracketedSequence(input)).x
1041             loss = F.cross_entropy(output.transpose(1, 2), input)
1042             acc_test_loss += loss.item() * input.size(0)
1043             nb_test_samples += input.size(0)
1044
1045         train_perplexity = math.exp(min(100, acc_train_loss / nb_train_samples))
1046         test_perplexity = math.exp(min(100, acc_test_loss / nb_test_samples))
1047
1048         log_string(
1049             f"perplexity {n_epoch} train_set {train_set_perplexity} train_prediction {train_perplexity} test_prediction {test_perplexity}"
1050         )
1051
1052         task.produce_results(n_epoch, model)
1053
1054     checkpoint = {
1055         "nb_epochs_finished": n_epoch + 1,
1056         "model_state": model.state_dict(),
1057         "rng_state": torch.get_rng_state(),
1058     }
1059
1060     if torch.cuda.is_available():
1061         checkpoint["cuda_rng_state"] = torch.cuda.get_rng_state()
1062
1063     checkpoint_name = os.path.join(args.result_dir, args.checkpoint_name)
1064     torch.save(checkpoint, checkpoint_name)
1065     log_string(f"saved checkpoint {checkpoint_name}")
1066
1067 ######################################################################