Update.
[picoclvr.git] / main.py
1 #!/usr/bin/env python
2
3 # Any copyright is dedicated to the Public Domain.
4 # https://creativecommons.org/publicdomain/zero/1.0/
5
6 # Written by Francois Fleuret <francois@fleuret.org>
7
8 # torch.backends.cuda.matmul.allow_tf23
9 # torch.autocast(torch.bfloat16)
10
11 import math, sys, argparse, time, tqdm, os
12
13 import torch, torchvision
14 from torch import nn
15 from torch.nn import functional as F
16
17 import mygpt, tensorstack
18
19 ######################################################################
20
21 if torch.cuda.is_available():
22     device = torch.device("cuda")
23     torch.backends.cuda.matmul.allow_tf32 = True
24 else:
25     device = torch.device("cpu")
26
27 ######################################################################
28
29 parser = argparse.ArgumentParser(
30     description="An implementation of GPT with cache.",
31     formatter_class=argparse.ArgumentDefaultsHelpFormatter,
32 )
33
34 parser.add_argument(
35     "--task",
36     type=str,
37     default="picoclvr",
38     help="picoclvr, mnist, maze, snake, stack, expr",
39 )
40
41 parser.add_argument("--log_filename", type=str, default="train.log", help=" ")
42
43 parser.add_argument("--result_dir", type=str, default=None)
44
45 parser.add_argument("--seed", type=int, default=0)
46
47 parser.add_argument("--nb_epochs", type=int, default=None)
48
49 parser.add_argument("--batch_size", type=int, default=None)
50
51 parser.add_argument("--nb_train_samples", type=int, default=None)
52
53 parser.add_argument("--nb_test_samples", type=int, default=None)
54
55 parser.add_argument("--optim", type=str, default="adam")
56
57 parser.add_argument("--learning_rate", type=float, default=1e-4)
58
59 parser.add_argument("--learning_rate_schedule", type=str, default="10: 2e-5,30: 4e-6")
60
61 parser.add_argument("--dim_model", type=int, default=512)
62
63 parser.add_argument("--dim_keys", type=int, default=64)
64
65 parser.add_argument("--dim_hidden", type=int, default=2048)
66
67 parser.add_argument("--nb_heads", type=int, default=8)
68
69 parser.add_argument("--nb_blocks", type=int, default=12)
70
71 parser.add_argument("--dropout", type=float, default=0.1)
72
73 parser.add_argument("--deterministic_synthesis", action="store_true", default=False)
74
75 parser.add_argument("--no_checkpoint", action="store_true", default=False)
76
77 parser.add_argument("--overwrite_results", action="store_true", default=False)
78
79 parser.add_argument("--checkpoint_name", type=str, default="checkpoint.pth")
80
81 ##############################
82 # picoclvr options
83
84 parser.add_argument("--picoclvr_nb_colors", type=int, default=5)
85
86 parser.add_argument("--picoclvr_height", type=int, default=12)
87
88 parser.add_argument("--picoclvr_width", type=int, default=16)
89
90 parser.add_argument("--picocvlr_prune_properties", type=str, default="none")
91
92 ##############################
93 # Maze options
94
95 parser.add_argument("--maze_height", type=int, default=13)
96
97 parser.add_argument("--maze_width", type=int, default=21)
98
99 parser.add_argument("--maze_nb_walls", type=int, default=15)
100
101 ##############################
102 # Snake options
103
104 parser.add_argument("--snake_height", type=int, default=6)
105
106 parser.add_argument("--snake_width", type=int, default=8)
107
108 parser.add_argument("--snake_nb_colors", type=int, default=5)
109
110 parser.add_argument("--snake_length", type=int, default=200)
111
112 ##############################
113 # Snake options
114
115 parser.add_argument("--stack_nb_steps", type=int, default=100)
116
117 parser.add_argument("--stack_nb_stacks", type=int, default=1)
118
119 parser.add_argument("--stack_nb_digits", type=int, default=3)
120
121 parser.add_argument("--stack_fraction_values_for_train", type=float, default=None)
122
123 ##############################
124 # Expr options
125
126 parser.add_argument("--expr_nb_variables", type=int, default=5)
127
128 parser.add_argument("--expr_sequence_length", type=int, default=30)
129
130 ######################################################################
131
132 args = parser.parse_args()
133
134 assert args.picocvlr_prune_properties in {"none", "train+eval", "eval"}
135
136 if args.result_dir is None:
137     args.result_dir = f"results_{args.task}"
138
139 ######################################################################
140
141 default_args = {
142     "picoclvr": {
143         "nb_epochs": 25,
144         "batch_size": 25,
145         "nb_train_samples": 250000,
146         "nb_test_samples": 10000,
147     },
148     "mnist": {
149         "nb_epochs": 25,
150         "batch_size": 10,
151         "nb_train_samples": 250000,
152         "nb_test_samples": 10000,
153     },
154     "maze": {
155         "nb_epochs": 25,
156         "batch_size": 25,
157         "nb_train_samples": 250000,
158         "nb_test_samples": 10000,
159     },
160     "snake": {
161         "nb_epochs": 5,
162         "batch_size": 25,
163         "nb_train_samples": 250000,
164         "nb_test_samples": 10000,
165     },
166     "stack": {
167         "nb_epochs": 5,
168         "batch_size": 25,
169         "nb_train_samples": 100000,
170         "nb_test_samples": 1000,
171     },
172     "expr": {
173         "nb_epochs": 50,
174         "batch_size": 25,
175         "nb_train_samples": 250000,
176         "nb_test_samples": 10000,
177     },
178 }
179
180 if args.task in default_args:
181     for k, v in default_args[args.task].items():
182         if getattr(args, k) is None:
183             setattr(args, k, v)
184
185 ######################################################################
186
187 try:
188     os.mkdir(args.result_dir)
189 except FileExistsError:
190     if not args.overwrite_results:
191         print(f"result directory {args.result_dir} already exists")
192         exit(1)
193
194 log_file = open(os.path.join(args.result_dir, args.log_filename), "a")
195
196 if args.seed >= 0:
197     # torch.backends.cudnn.deterministic = True
198     # torch.backends.cudnn.benchmark = False
199     # torch.use_deterministic_algorithms(True)
200     torch.manual_seed(args.seed)
201     if torch.cuda.is_available():
202         torch.cuda.manual_seed_all(args.seed)
203
204 ######################################################################
205
206
207 def log_string(s):
208     t = time.strftime("%Y%m%d-%H:%M:%S ", time.localtime())
209
210     if log_file is not None:
211         log_file.write(t + s + "\n")
212         log_file.flush()
213
214     print(t + s)
215     sys.stdout.flush()
216
217
218 for n in vars(args):
219     log_string(f"args.{n} {getattr(args, n)}")
220
221 ######################################################################
222
223
224 # ra_mask is boolean, with 1s on the values to generate
225
226
227 def masked_inplace_autoregression(
228     model,
229     batch_size,
230     input,
231     ar_mask,
232     forbidden_tokens=None,
233     progress_bar_desc="autoregression",
234     device=torch.device("cpu"),
235 ):
236     batches = zip(input.split(batch_size), ar_mask.split(batch_size))
237
238     if progress_bar_desc is not None:
239         batches = tqdm.tqdm(
240             batches,
241             dynamic_ncols=True,
242             desc=progress_bar_desc,
243             total=input.size(0) // batch_size,
244         )
245
246     for input, ar_mask in batches:
247         i = (ar_mask.sum(0) > 0).nonzero()
248         if i.min() > 0:
249             model(
250                 mygpt.BracketedSequence(input, 0, i.min())
251             )  # Needed to initialize the model's cache
252         for s in range(i.min(), i.max() + 1):
253             output = model(mygpt.BracketedSequence(input, s, 1)).x
254             logits = output[:, s]
255             if forbidden_tokens is not None:
256                 logits = logits.masked_fill(forbidden_tokens, float("-inf"))
257             if args.deterministic_synthesis:
258                 t_next = logits.argmax(1)
259             else:
260                 dist = torch.distributions.categorical.Categorical(logits=logits)
261                 t_next = dist.sample()
262             input[:, s] = ar_mask[:, s] * t_next + (1 - ar_mask[:, s]) * input[:, s]
263
264
265 ######################################################################
266
267
268 class Task:
269     def batches(self, split="train"):
270         pass
271
272     def vocabulary_size(self):
273         pass
274
275     def produce_results(self, n_epoch, model):
276         pass
277
278
279 ######################################################################
280
281 import picoclvr
282
283
284 class TaskPicoCLVR(Task):
285     # Make a tensor from a list of strings
286     def tensorize(self, descr):
287         token_descr = [s.strip().split(" ") for s in descr]
288         l = max([len(s) for s in token_descr])
289         token_descr = [s + ["<nul>"] * (l - len(s)) for s in token_descr]
290         id_descr = [[self.token2id[u] for u in s] for s in token_descr]
291         return torch.tensor(id_descr, device=self.device)
292
293     # Make a list of strings from a tensor
294     def detensorize(self, x):
295         return [" ".join([self.id2token[t.item()] for t in r]) for r in x]
296
297     # trim all the tensors in the tuple z to remove as much token from
298     # left and right in the first tensor. If z is a tuple, all its
299     # elements are trimed according to the triming for the first
300     def trim(self, z, token="<nul>"):
301         n = self.token2id[token]
302         if type(z) == tuple:
303             x = z[0]
304             i = (1 - (F.pad(x, (1, 1), value=n) == n).min(0).values.long()).cumsum(0)
305             a, b = (i == 0).nonzero().max(), (i == i.max()).nonzero().min()
306             return tuple([t[:, a:b] for t in z])
307         else:
308             i = (1 - (F.pad(z, (1, 1), value=n) == n).min(0).values.long()).cumsum(0)
309             a, b = (i == 0).nonzero().max(), (i == i.max()).nonzero().min()
310             return z[:, a:b]
311
312     ######################
313     # Not the cleanest part of the code
314
315     # Extract the last image of each sequence, from the last <img>
316     # included, and set to <nul> all the tokens from the beginning of
317     # that image to the end
318     def excise_last_image(self, input):
319         t_img, t_nul = self.token2id["<img>"], self.token2id["<nul>"]
320         nb_img_tokens = self.height * self.width + 1
321
322         input = input.clone()
323         t = (input == t_img).long()
324         tail_masks = (t.cumsum(dim=1) == t.sum(dim=1, keepdim=True)).long()
325         i = (t * tail_masks).nonzero(as_tuple=True)
326         j = (
327             i[0][:, None],
328             i[1][:, None] + torch.arange(nb_img_tokens, device=input.device)[None, :],
329         )
330         images = self.trim(input[j])
331         input[j] = t_nul
332         loss_masks = 1 - tail_masks
333         input, loss_masks = self.trim((input, loss_masks))
334         return input, loss_masks, images
335
336     def add_true_image(self, input, images, loss_masks):
337         t_nul = self.token2id["<nul>"]
338         nb_img_tokens = self.height * self.width + 1
339         input = F.pad(input, (0, nb_img_tokens), value=t_nul)
340         loss_masks = F.pad(loss_masks, (0, nb_img_tokens), value=0)
341         t = (input == t_nul).long()
342         i = (t.cumsum(dim=1) == 1).nonzero(as_tuple=True)
343         j = (
344             i[0][:, None],
345             i[1][:, None] + torch.arange(nb_img_tokens, device=input.device)[None, :],
346         )
347         input[j] = images
348         loss_masks[j] = 1
349         input, loss_masks = self.trim((input, loss_masks))
350         return input, loss_masks
351
352     def add_generated_image(self, input, loss_masks, model):
353         t_img, t_nul = self.token2id["<img>"], self.token2id["<nul>"]
354         nb_img_tokens = self.height * self.width + 1
355
356         input = F.pad(input, (0, nb_img_tokens), value=t_nul)
357         loss_masks = F.pad(loss_masks, (0, nb_img_tokens), value=0)
358         t = (input == t_nul).long()
359         i = (t.cumsum(dim=1) == 1).nonzero(as_tuple=True)
360         input[i] = t_img
361
362         j = (
363             i[0][:, None],
364             i[1][:, None]
365             + 1
366             + torch.arange(nb_img_tokens - 1, device=input.device)[None, :],
367         )
368         ar_masks = input.new_zeros(input.size(), dtype=torch.int64)
369         ar_masks[j] = 1
370         forbidden_tokens = (
371             torch.arange(self.vocabulary_size(), device=input.device) == t_nul
372         )
373         with torch.autograd.no_grad():
374             t = model.training
375             model.eval()
376             masked_inplace_autoregression(
377                 model,
378                 self.batch_size,
379                 input,
380                 ar_masks,
381                 forbidden_tokens,
382                 progress_bar_desc=None,
383                 device=self.device,
384             )
385             model.train(t)
386
387         input, loss_masks = self.trim((input, loss_masks))
388
389         return input, loss_masks
390
391     ######################
392
393     def __init__(
394         self,
395         nb_train_samples,
396         nb_test_samples,
397         batch_size,
398         height,
399         width,
400         nb_colors=5,
401         device=torch.device("cpu"),
402         pruner_train=None,
403         pruner_eval=None,
404     ):
405         def generate_descr(nb, cache_suffix, pruner):
406             return picoclvr.generate(
407                 nb,
408                 height=self.height,
409                 width=self.width,
410                 nb_colors=nb_colors,
411                 pruner=pruner,
412             )
413
414         self.height = height
415         self.width = width
416         self.batch_size = batch_size
417         self.device = device
418         self.pruner_train = pruner_train
419         self.pruner_eval = pruner_eval
420
421         param = {
422             "nb_train_samples": nb_train_samples,
423             "nb_test_samples": nb_test_samples,
424             "height": height,
425             "width": width,
426             "nb_colors": nb_colors,
427             "batch_size": batch_size,
428             "rng_state": list(torch.get_rng_state()),
429         }
430
431         log_string(
432             f"generating {nb_train_samples+nb_test_samples} samples (can take some time)"
433         )
434         self.train_descr = generate_descr(
435             nb_train_samples, "train", pruner=self.pruner_train
436         )
437         self.test_descr = generate_descr(nb_test_samples, "test", pruner=None)
438
439         # Build the tokenizer
440         tokens = {"<nul>", "<img>"}
441         for d in [self.train_descr, self.test_descr]:
442             for s in d:
443                 for t in s.strip().split(" "):
444                     tokens.add(t)
445         # make this set a sorted list to get the same tensors given
446         # the same descr
447         tokens = list(tokens)
448         tokens.sort()
449         self.token2id = dict([(t, n) for n, t in enumerate(tokens)])
450         self.id2token = dict([(n, t) for n, t in enumerate(tokens)])
451
452         # Tokenize the train and test sets
453         self.train_input = self.tensorize(self.train_descr)
454         self.test_input = self.tensorize(self.test_descr)
455
456     def batches(self, split="train"):
457         assert split in {"train", "test"}
458         input = self.train_input if split == "train" else self.test_input
459         for batch in tqdm.tqdm(
460             input.split(self.batch_size), dynamic_ncols=True, desc=f"epoch-{split}"
461         ):
462             yield self.trim(batch)
463
464     def vocabulary_size(self):
465         return len(self.token2id)
466
467     def compute_missing_properties(self, n_epoch, model, pruner=None):
468         acc_nb_requested_properties = []
469         acc_nb_missing_properties = []
470         acc_nb_results = 0
471
472         for input in tqdm.tqdm(
473             self.test_input.split(self.batch_size),
474             dynamic_ncols=True,
475             desc=f"test-properties",
476         ):
477             tape, loss_masks, _ = self.excise_last_image(input)
478             tape, loss_masks = self.add_generated_image(tape, loss_masks, model)
479             result_descr = self.detensorize(tape)
480             np = picoclvr.nb_properties(
481                 result_descr,
482                 height=self.height,
483                 width=self.width,
484                 pruner=pruner,
485             )
486             nb_requested_properties, _, nb_missing_properties = zip(*np)
487             acc_nb_requested_properties += nb_requested_properties
488             acc_nb_missing_properties += nb_missing_properties
489             acc_nb_results += len(result_descr)
490
491         nb_requested_properties = sum(acc_nb_requested_properties)
492         nb_missing_properties = sum(acc_nb_missing_properties)
493
494         prefix = "" if pruner is None else "pruned_"
495         log_string(f"nb_{prefix}samples {n_epoch} {acc_nb_results}")
496         log_string(
497             f"property_{prefix}nb {n_epoch} requested {sum(acc_nb_requested_properties)} missing {sum(acc_nb_missing_properties)}"
498         )
499         log_string(
500             f"property_{prefix}miss {n_epoch} {100*nb_missing_properties/nb_requested_properties:.02f}%"
501         )
502
503     ######################################################################
504
505     def produce_results(self, n_epoch, model):
506         self.compute_missing_properties(n_epoch, model)
507
508         if self.pruner_eval is not None:
509             self.compute_missing_properties(n_epoch, model, self.pruner_eval)
510
511         nb_tokens_to_generate = self.height * self.width + 3
512         result_descr = []
513         nb_per_primer = 8
514         primer = []
515
516         for primer_descr in [
517             "red above green <sep> green top <sep> blue right of red",
518             "there is red <sep> there is yellow <sep> there is blue",
519             "red below yellow <sep> yellow below green <sep> green below blue <sep> red right <sep> yellow left <sep> green right <sep> blue left",
520             "green bottom <sep> yellow bottom <sep> green left of blue <sep> yellow right of blue <sep> blue top",
521         ]:
522             primer += [primer_descr] * nb_per_primer
523
524         tape = self.tensorize(primer)
525         loss_masks = 1 - (tape == self.token2id["<nul>"]).long()
526         tape, loss_masks = self.add_generated_image(tape, loss_masks, model)
527         result_descr = self.detensorize(tape)
528
529         np = picoclvr.nb_properties(result_descr, height=self.height, width=self.width)
530
531         acc_nb_requested_properties, _, acc_nb_missing_properties = zip(*np)
532         acc_nb_results = len(result_descr)
533
534         nb_requested_properties = sum(acc_nb_requested_properties)
535         nb_missing_properties = sum(acc_nb_missing_properties)
536
537         prefix = "demo_"
538         log_string(f"nb_{prefix}samples {n_epoch} {acc_nb_results}")
539         log_string(
540             f"property_{prefix}nb {n_epoch} requested {sum(acc_nb_requested_properties)} missing {sum(acc_nb_missing_properties)}"
541         )
542         log_string(
543             f"property_{prefix}miss {n_epoch} {100*nb_missing_properties/nb_requested_properties:.02f}%"
544         )
545
546         img = picoclvr.descr2img(result_descr, height=self.height, width=self.width)
547
548         if img.dim() == 5:
549             if img.size(1) == 1:
550                 img = F.pad(img.squeeze(1), pad=(1, 1, 1, 1), value=64)
551             else:
552                 img = torch.cat(
553                     [
554                         torchvision.utils.make_grid(x, padding=1, pad_value=64)[None]
555                         for x in img
556                     ],
557                     0,
558                 )
559
560         image_name = os.path.join(args.result_dir, f"picoclvr_result_{n_epoch:04d}.png")
561         torchvision.utils.save_image(
562             img / 255.0, image_name, nrow=nb_per_primer, padding=1, pad_value=0.0
563         )
564         log_string(f"wrote {image_name}")
565
566
567 ######################################################################
568
569
570 class TaskMNIST(Task):
571     def __init__(self, batch_size, device=torch.device("cpu")):
572         self.device = device
573         self.batch_size = batch_size
574
575     def batches(self, split="train"):
576         assert split in {"train", "test"}
577         data_set = torchvision.datasets.MNIST(
578             root="./data", train=(split == "train"), download=True
579         )
580         data_input = data_set.data.view(-1, 28 * 28).long()
581         if args.nb_train_samples is not None:
582             data_input = data_input[: args.nb_train_samples]
583         for batch in tqdm.tqdm(
584             data_input.split(self.batch_size), desc=f"epoch-{split}"
585         ):
586             yield batch
587
588     def vocabulary_size(self):
589         return 256
590
591     def produce_results(self, n_epoch, model):
592         results = torch.empty(64, 28 * 28, device=self.device, dtype=torch.int64)
593         ar_mask = torch.full_like(results, 1)
594         masked_inplace_autoregression(
595             model, self.batch_size, results, ar_mask, device=self.device
596         )
597         image_name = os.path.join(args.result_dir, f"mnist_result_{n_epoch:04d}.png")
598         torchvision.utils.save_image(
599             1 - results.reshape(-1, 1, 28, 28) / 255.0,
600             image_name,
601             nrow=16,
602             pad_value=0.8,
603         )
604         log_string(f"wrote {image_name}")
605
606
607 ######################################################################
608
609 import maze
610
611
612 class TaskMaze(Task):
613     def map2seq(self, *m):
614         return torch.cat([x.flatten(1) for x in m], 1)
615
616     def seq2map(self, s):
617         s = s.reshape(s.size(0), -1, self.height, self.width)
618         return (s[:, k] for k in range(s.size(1)))
619
620     def __init__(
621         self,
622         nb_train_samples,
623         nb_test_samples,
624         batch_size,
625         height,
626         width,
627         nb_walls,
628         device=torch.device("cpu"),
629     ):
630         self.batch_size = batch_size
631         self.height = height
632         self.width = width
633         self.device = device
634
635         train_mazes, train_paths, _ = maze.create_maze_data(
636             nb_train_samples,
637             height=height,
638             width=width,
639             nb_walls=nb_walls,
640             progress_bar=lambda x: tqdm.tqdm(x, dynamic_ncols=True, desc=f"data-train"),
641         )
642         self.train_input = self.map2seq(train_mazes.to(device), train_paths.to(device))
643
644         test_mazes, test_paths, _ = maze.create_maze_data(
645             nb_test_samples,
646             height=height,
647             width=width,
648             nb_walls=nb_walls,
649             progress_bar=lambda x: tqdm.tqdm(x, dynamic_ncols=True, desc=f"data-test"),
650         )
651         self.test_input = self.map2seq(test_mazes.to(device), test_paths.to(device))
652
653         self.nb_codes = max(self.train_input.max(), self.test_input.max()) + 1
654
655     def batches(self, split="train", nb_to_use=-1, desc=None):
656         assert split in {"train", "test"}
657         input = self.train_input if split == "train" else self.test_input
658         if nb_to_use > 0:
659             input = input[:nb_to_use]
660         if desc is None:
661             desc = f"epoch-{split}"
662         for batch in tqdm.tqdm(
663             input.split(self.batch_size), dynamic_ncols=True, desc=desc
664         ):
665             yield batch
666
667     def vocabulary_size(self):
668         return self.nb_codes
669
670     def compute_error(self, model, split="train", nb_to_use=-1):
671         nb_total, nb_correct = 0, 0
672         count = torch.zeros(
673             self.width * self.height,
674             self.width * self.height,
675             device=self.device,
676             dtype=torch.int64,
677         )
678         for input in tqdm.tqdm(
679             task.batches(split, nb_to_use),
680             dynamic_ncols=True,
681             desc=f"test-mazes",
682         ):
683             result = input.clone()
684             ar_mask = result.new_zeros(result.size())
685             ar_mask[:, self.height * self.width :] = 1
686             result *= 1 - ar_mask
687             masked_inplace_autoregression(
688                 model,
689                 self.batch_size,
690                 result,
691                 ar_mask,
692                 progress_bar_desc=None,
693                 device=self.device,
694             )
695             mazes, paths = self.seq2map(result)
696             path_correctness = maze.path_correctness(mazes, paths)
697             nb_correct += path_correctness.long().sum()
698             nb_total += mazes.size(0)
699
700             optimal_path_lengths = (
701                 (input[:, self.height * self.width :] == maze.v_path).long().sum(1)
702             )
703             predicted_path_lengths = (
704                 (result[:, self.height * self.width :] == maze.v_path).long().sum(1)
705             )
706             optimal_path_lengths = optimal_path_lengths[path_correctness]
707             predicted_path_lengths = predicted_path_lengths[path_correctness]
708             count[optimal_path_lengths, predicted_path_lengths] += 1
709
710         if count.max() == 0:
711             count = None
712         else:
713             count = count[
714                 : count.sum(1).nonzero().max() + 1, : count.sum(0).nonzero().max() + 1
715             ]
716
717         return nb_total, nb_correct, count
718
719     def produce_results(self, n_epoch, model):
720         with torch.autograd.no_grad():
721             t = model.training
722             model.eval()
723
724             train_nb_total, train_nb_correct, count = self.compute_error(
725                 model, "train", nb_to_use=1000
726             )
727             log_string(
728                 f"accuracy_train {n_epoch} nb_total {train_nb_total} nb_correct {train_nb_correct} accuracy {(100.0*train_nb_correct)/train_nb_total:.02f}%"
729             )
730
731             test_nb_total, test_nb_correct, count = self.compute_error(
732                 model, "test", nb_to_use=1000
733             )
734             log_string(
735                 f"accuracy_test {n_epoch} nb_total {test_nb_total} nb_correct {test_nb_correct} accuracy {(100.0*test_nb_correct)/test_nb_total:.02f}%"
736             )
737
738             if count is not None:
739                 proportion_optimal = count.diagonal().sum().float() / count.sum()
740                 log_string(f"proportion_optimal_test {proportion_optimal*100:.02f}%")
741                 with open(
742                     os.path.join(args.result_dir, f"maze_result_{n_epoch:04d}.txt"), "w"
743                 ) as f:
744                     for i in range(count.size(0)):
745                         for j in range(count.size(1)):
746                             eol = " " if j < count.size(1) - 1 else "\n"
747                             f.write(f"{count[i,j]}{eol}")
748
749             input = self.test_input[:48]
750             result = input.clone()
751             ar_mask = result.new_zeros(result.size())
752             ar_mask[:, self.height * self.width :] = 1
753             result *= 1 - ar_mask
754             masked_inplace_autoregression(
755                 model, self.batch_size, result, ar_mask, device=self.device
756             )
757
758             mazes, paths = self.seq2map(input)
759             _, predicted_paths = self.seq2map(result)
760
761             filename = os.path.join(args.result_dir, f"maze_result_{n_epoch:04d}.png")
762             maze.save_image(
763                 filename,
764                 mazes=mazes,
765                 target_paths=paths,
766                 predicted_paths=predicted_paths,
767                 path_correct=maze.path_correctness(mazes, predicted_paths),
768                 path_optimal=maze.path_optimality(paths, predicted_paths),
769             )
770             log_string(f"wrote {filename}")
771
772             model.train(t)
773
774
775 ######################################################################
776
777
778 import snake
779
780
781 class TaskSnake(Task):
782     def __init__(
783         self,
784         nb_train_samples,
785         nb_test_samples,
786         batch_size,
787         height,
788         width,
789         nb_colors,
790         length,
791         prompt_length,
792         device=torch.device("cpu"),
793     ):
794         self.batch_size = batch_size
795         self.height = height
796         self.width = width
797         self.device = device
798         self.prompt_length = prompt_length
799
800         self.train_input, self.train_prior_visits, _, _ = snake.generate_sequences(
801             nb_train_samples,
802             height,
803             width,
804             nb_colors,
805             length,
806             prompt_length,
807             self.device,
808         )
809         self.test_input, self.test_prior_visits, _, _ = snake.generate_sequences(
810             nb_test_samples,
811             height,
812             width,
813             nb_colors,
814             length,
815             prompt_length,
816             self.device,
817         )
818
819         self.nb_codes = max(self.train_input.max(), self.test_input.max()) + 1
820
821     def batches(self, split="train", nb_to_use=-1, desc=None):
822         assert split in {"train", "test"}
823         input = self.train_input if split == "train" else self.test_input
824         if nb_to_use > 0:
825             input = input[:nb_to_use]
826         if desc is None:
827             desc = f"epoch-{split}"
828         for batch in tqdm.tqdm(
829             input.split(self.batch_size), dynamic_ncols=True, desc=desc
830         ):
831             yield batch
832
833     def vocabulary_size(self):
834         return self.nb_codes
835
836     def produce_results(self, n_epoch, model):
837         with torch.autograd.no_grad():
838             t = model.training
839             model.eval()
840
841             def compute_nb_correct(input, prior_visits):
842                 result = input.clone()
843                 i = torch.arange(result.size(1), device=result.device)[None, :]
844                 ar_mask = (
845                     torch.logical_and(i >= self.prompt_length * 2, i % 2 == 0)
846                     .long()
847                     .expand_as(result)
848                 )
849                 result *= 1 - ar_mask
850
851                 # snake.solver(result,ar_mask)
852
853                 masked_inplace_autoregression(
854                     model, self.batch_size, result, ar_mask, device=self.device
855                 )
856
857                 nb_total = ((prior_visits > 0) * ar_mask).sum()
858
859                 nb_correct = (
860                     (result == input).long() * (prior_visits > 0) * ar_mask
861                 ).sum()
862
863                 # nb_total = result.size(0)
864                 # nb_correct = ((result - input).abs().sum(1) == 0).sum()
865
866                 return nb_total, nb_correct
867
868             # train_nb_total, train_nb_correct = compute_nb_correct(
869             # self.train_input, self.train_prior_visits
870             # )
871
872             # log_string(
873             # f"accuracy_train nb_total {train_nb_total} nb_correct {train_nb_correct} accuracy {(100.0*train_nb_correct)/train_nb_total:.02f}%"
874             # )
875
876             test_nb_total, test_nb_correct = compute_nb_correct(
877                 self.test_input[:1000], self.test_prior_visits[:1000]
878             )
879
880             log_string(
881                 f"accuracy_test {n_epoch} nb_total {test_nb_total} nb_correct {test_nb_correct} accuracy {(100.0*test_nb_correct)/test_nb_total:.02f}%"
882             )
883
884             model.train(t)
885
886
887 ######################################################################
888
889
890 import stack
891
892
893 class TaskStack(Task):
894     def __init__(
895         self,
896         nb_train_samples,
897         nb_test_samples,
898         batch_size,
899         nb_steps,
900         nb_stacks,
901         nb_digits,
902         fraction_values_for_train=None,
903         device=torch.device("cpu"),
904     ):
905         self.batch_size = batch_size
906         self.nb_steps = nb_steps
907         self.nb_stacks = nb_stacks
908         self.nb_digits = nb_digits
909         self.device = device
910
911         if fraction_values_for_train is None:
912             values_for_train = None
913             values_for_test = None
914         else:
915             all = torch.randperm(10**nb_digits)
916             nb_for_train = int(all.size(0) * fraction_values_for_train)
917             values_for_train = all[:nb_for_train]
918             values_for_test = all[nb_for_train:]
919
920         self.train_input, self.train_stack_counts = stack.generate_sequences(
921             nb_train_samples,
922             nb_steps,
923             nb_stacks,
924             nb_digits,
925             values_for_train,
926             self.device,
927         )
928
929         self.test_input, self.test_stack_counts = stack.generate_sequences(
930             nb_test_samples,
931             nb_steps,
932             nb_stacks,
933             nb_digits,
934             values_for_test,
935             self.device,
936         )
937
938         i = torch.logical_and(self.test_input % 2 == 1, self.test_input < 2 * nb_stacks)
939         counts = self.test_stack_counts.flatten()[i.flatten()]
940         counts = F.one_hot(counts).sum(0)
941         log_string(f"test_pop_stack_counts {counts}")
942
943         self.nb_codes = max(self.train_input.max(), self.test_input.max()) + 1
944
945     def batches(self, split="train", nb_to_use=-1, desc=None):
946         assert split in {"train", "test"}
947         input = self.train_input if split == "train" else self.test_input
948         if nb_to_use > 0:
949             input = input[:nb_to_use]
950         if desc is None:
951             desc = f"epoch-{split}"
952         for batch in tqdm.tqdm(
953             input.split(self.batch_size), dynamic_ncols=True, desc=desc
954         ):
955             yield batch
956
957     def vocabulary_size(self):
958         return self.nb_codes
959
960     def produce_results(self, n_epoch, model):
961         with torch.autograd.no_grad():
962             t = model.training
963             model.eval()
964
965             def compute_nb_correct(input):
966                 result = input.clone()
967                 stack.remove_popped_values(result, self.nb_stacks, self.nb_digits)
968                 ar_mask = (result != input).long()
969                 masked_inplace_autoregression(
970                     model, self.batch_size, result, ar_mask, device=self.device
971                 )
972
973                 errors = ((result != input).long() * ar_mask).reshape(
974                     -1, 1 + self.nb_digits
975                 )
976                 ar_mask = ar_mask.reshape(-1, 1 + self.nb_digits)
977
978                 nb_total = ar_mask.max(1).values.sum()
979                 nb_correct = nb_total - errors.max(1).values.sum()
980
981                 return nb_total, nb_correct
982
983             test_nb_total, test_nb_correct = compute_nb_correct(self.test_input[:1000])
984
985             log_string(
986                 f"accuracy_test {n_epoch} nb_total {test_nb_total} nb_correct {test_nb_correct} accuracy {(100.0*test_nb_correct)/test_nb_total:.02f}%"
987             )
988
989             ##############################################################
990             # Log a few generated sequences
991             input = self.test_input[:10, : 12 * (1 + self.nb_digits)]
992             result = input.clone()
993             stack.remove_popped_values(result, self.nb_stacks, self.nb_digits)
994             ar_mask = (result != input).long()
995             for n in range(result.size(0)):
996                 log_string(
997                     f"test_before {stack.seq_to_str(result[n],nb_stacks=self.nb_stacks,nb_digits=self.nb_digits)}"
998                 )
999             masked_inplace_autoregression(
1000                 model, self.batch_size, result, ar_mask, device=self.device
1001             )
1002             for n in range(result.size(0)):
1003                 log_string(
1004                     f"test_after  {stack.seq_to_str(result[n],nb_stacks=self.nb_stacks,nb_digits=self.nb_digits)}"
1005                 )
1006             ##############################################################
1007
1008             model.train(t)
1009
1010
1011 ######################################################################
1012
1013
1014 import expr
1015
1016
1017 class TaskExpr(Task):
1018     def __init__(
1019         self,
1020         nb_train_samples,
1021         nb_test_samples,
1022         nb_variables,
1023         sequence_length,
1024         batch_size,
1025         device=torch.device("cpu"),
1026     ):
1027         self.batch_size = batch_size
1028         self.device = device
1029
1030         train_sequences = expr.generate_sequences(
1031             nb_train_samples,
1032             nb_variables=nb_variables,
1033             length=sequence_length,
1034             # length=2 * sequence_length,
1035             # randomize_length=True,
1036         )
1037         test_sequences = expr.generate_sequences(
1038             nb_test_samples,
1039             nb_variables=nb_variables,
1040             length=sequence_length,
1041         )
1042         self.char2id = dict(
1043             [
1044                 (c, n)
1045                 for n, c in enumerate(
1046                     set("#" + "".join(train_sequences + test_sequences))
1047                 )
1048             ]
1049         )
1050         self.id2char = dict([(n, c) for c, n in self.char2id.items()])
1051
1052         self.filler, self.space = self.char2id["#"], self.char2id[" "]
1053
1054         len_max = max([len(x) for x in train_sequences])
1055         self.train_input = torch.cat(
1056             [
1057                 torch.tensor(
1058                     [
1059                         [self.char2id[c] for c in s + "#" * (len_max - len(s))]
1060                         for s in train_sequences
1061                     ]
1062                 )
1063             ],
1064             0,
1065         ).to(device)
1066
1067         len_max = max([len(x) for x in test_sequences])
1068         self.test_input = torch.cat(
1069             [
1070                 torch.tensor(
1071                     [
1072                         [self.char2id[c] for c in s + "#" * (len_max - len(s))]
1073                         for s in test_sequences
1074                     ]
1075                 )
1076             ],
1077             0,
1078         ).to(device)
1079
1080         self.nb_codes = max(self.train_input.max(), self.test_input.max()) + 1
1081
1082     def batches(self, split="train", nb_to_use=-1, desc=None):
1083         assert split in {"train", "test"}
1084         input = self.train_input if split == "train" else self.test_input
1085         if nb_to_use > 0:
1086             input = input[:nb_to_use]
1087         if desc is None:
1088             desc = f"epoch-{split}"
1089         for batch in tqdm.tqdm(
1090             input.split(self.batch_size), dynamic_ncols=True, desc=desc
1091         ):
1092             if split == "train":
1093                 last = (batch != self.filler).max(0).values.nonzero().max() + 1
1094                 batch = batch[:, :last]
1095             yield batch
1096
1097     def vocabulary_size(self):
1098         return self.nb_codes
1099
1100     def seq2str(self, s):
1101         return "".join([self.id2char[k.item()] for k in s])
1102
1103     def produce_results(self, n_epoch, model):
1104         with torch.autograd.no_grad():
1105             t = model.training
1106             model.eval()
1107
1108             def compute_nb_correct(input):
1109                 result = input.clone()
1110                 ar_mask = (result == self.space).long().cumsum(dim=1).clamp(max=1)
1111                 result = (1 - ar_mask) * result + ar_mask * self.filler
1112                 masked_inplace_autoregression(
1113                     model, self.batch_size, result, ar_mask, device=self.device
1114                 )
1115
1116                 nb_total = input.size(0)
1117                 nb_correct = (input == result).long().min(1).values.sum()
1118
1119                 #######################################################################
1120                 # Comput predicted vs. true variable values
1121
1122                 nb_delta = torch.zeros(5, dtype=torch.int64)
1123                 nb_missed = 0
1124
1125                 values_input = expr.extract_results([self.seq2str(s) for s in input])
1126                 values_result = expr.extract_results([self.seq2str(s) for s in result])
1127
1128                 for i, r in zip(values_input, values_result):
1129                     for n, vi in i.items():
1130                         vr = r.get(n)
1131                         if vr is None or vr < 0:
1132                             nb_missed += 1
1133                         else:
1134                             d = abs(vr-vi)
1135                             if d >= nb_delta.size(0):
1136                                 nb_missed += 1
1137                             else:
1138                                 nb_delta[d] += 1
1139
1140                 ######################################################################
1141
1142                 return nb_total, nb_correct, nb_delta, nb_missed
1143
1144             test_nb_total, test_nb_correct, test_nb_delta, test_nb_missed = compute_nb_correct(self.test_input[:1000])
1145
1146             log_string(
1147                 f"accuracy_test {n_epoch} nb_total {test_nb_total} nb_correct {test_nb_correct} accuracy {(100.0*test_nb_correct)/test_nb_total:.02f}%"
1148             )
1149
1150             nb_total = test_nb_delta.sum() + test_nb_missed
1151             for d in range(test_nb_delta.size(0)):
1152                 log_string(f"error_value {n_epoch} delta {d} {test_nb_delta[d]} {test_nb_delta[d]*100/nb_total:.02f}%")
1153             log_string(f"error_value {n_epoch} missed {test_nb_missed} {test_nb_missed*100/nb_total:.02f}%")
1154
1155
1156             ##############################################################
1157             # Log a few generated sequences
1158             input = self.test_input[:10]
1159             result = input.clone()
1160             ar_mask = (result == self.space).long().cumsum(dim=1).clamp(max=1)
1161             result = (1 - ar_mask) * result + ar_mask * self.filler
1162             for n in range(result.size(0)):
1163                 log_string(f"test_before {self.seq2str(result[n])}")
1164             masked_inplace_autoregression(
1165                 model, self.batch_size, result, ar_mask, device=self.device
1166             )
1167             correct = (1 - ar_mask) * self.space + ar_mask * input
1168             for n in range(result.size(0)):
1169                 comment = "GOOD" if (result[n] - input[n]).abs().max() == 0 else ""
1170                 log_string(f"test_after  {self.seq2str(result[n])} {comment}")
1171                 log_string(f"correct     {self.seq2str(correct[n])}")
1172             ##############################################################
1173
1174             model.train(t)
1175
1176
1177 ######################################################################
1178
1179
1180 def picoclvr_pruner_horizontal_green(p):
1181     return not ("green" in p and ("left" in p or "right" in p))
1182
1183
1184 picoclvr_pruner_train = (
1185     picoclvr_pruner_horizontal_green
1186     if args.picocvlr_prune_properties in {"train+eval"}
1187     else None
1188 )
1189
1190 picoclvr_pruner_eval = (
1191     (lambda p: not picoclvr_pruner_horizontal_green(p))
1192     if args.picocvlr_prune_properties in {"train+eval", "eval"}
1193     else None
1194 )
1195
1196 ######################################################################
1197
1198 if args.task == "picoclvr":
1199     task = TaskPicoCLVR(
1200         nb_train_samples=args.nb_train_samples,
1201         nb_test_samples=args.nb_test_samples,
1202         batch_size=args.batch_size,
1203         height=args.picoclvr_height,
1204         width=args.picoclvr_width,
1205         nb_colors=args.picoclvr_nb_colors,
1206         device=device,
1207         pruner_train=picoclvr_pruner_train,
1208         pruner_eval=picoclvr_pruner_eval,
1209     )
1210
1211 elif args.task == "mnist":
1212     task = TaskMNIST(
1213         batch_size=args.batch_size,
1214         device=device,
1215     )
1216
1217 elif args.task == "maze":
1218     task = TaskMaze(
1219         nb_train_samples=args.nb_train_samples,
1220         nb_test_samples=args.nb_test_samples,
1221         batch_size=args.batch_size,
1222         height=args.maze_height,
1223         width=args.maze_width,
1224         nb_walls=args.maze_nb_walls,
1225         device=device,
1226     )
1227
1228 elif args.task == "snake":
1229     task = TaskSnake(
1230         nb_train_samples=args.nb_train_samples,
1231         nb_test_samples=args.nb_test_samples,
1232         batch_size=args.batch_size,
1233         height=args.snake_height,
1234         width=args.snake_width,
1235         nb_colors=args.snake_nb_colors,
1236         length=args.snake_length,
1237         prompt_length=args.snake_length // 2,
1238         device=device,
1239     )
1240
1241 elif args.task == "stack":
1242     task = TaskStack(
1243         nb_train_samples=args.nb_train_samples,
1244         nb_test_samples=args.nb_test_samples,
1245         batch_size=args.batch_size,
1246         nb_steps=args.stack_nb_steps,
1247         nb_stacks=args.stack_nb_stacks,
1248         nb_digits=args.stack_nb_digits,
1249         fraction_values_for_train=args.stack_fraction_values_for_train,
1250         device=device,
1251     )
1252
1253 elif args.task == "expr":
1254     task = TaskExpr(
1255         nb_train_samples=args.nb_train_samples,
1256         nb_test_samples=args.nb_test_samples,
1257         nb_variables=args.expr_nb_variables,
1258         sequence_length=args.expr_sequence_length,
1259         batch_size=args.batch_size,
1260         device=device,
1261     )
1262
1263 else:
1264     raise ValueError(f"Unknown task {args.task}")
1265
1266 ######################################################################
1267
1268 log_string(f"device {device}")
1269
1270 vocabulary_size = task.vocabulary_size()
1271
1272 log_string(f"vocabulary_size {vocabulary_size}")
1273
1274 ##############################
1275
1276 model = mygpt.MyGPT(
1277     vocabulary_size=vocabulary_size,
1278     dim_model=args.dim_model,
1279     dim_keys=args.dim_keys,
1280     dim_hidden=args.dim_hidden,
1281     nb_heads=args.nb_heads,
1282     nb_blocks=args.nb_blocks,
1283     causal=True,
1284     dropout=args.dropout,
1285 )
1286
1287 model.to(device)
1288
1289 nb_parameters = sum(p.numel() for p in model.parameters())
1290 log_string(f"nb_parameters {nb_parameters} ({int(nb_parameters/1e6)}M)")
1291
1292 ######################################################################
1293
1294 nb_epochs_finished = 0
1295
1296 if args.no_checkpoint:
1297     log_string(f"not trying to load checkpoint.")
1298
1299 else:
1300     try:
1301         checkpoint_name = os.path.join(args.result_dir, args.checkpoint_name)
1302         checkpoint = torch.load(checkpoint_name)
1303         nb_epochs_finished = checkpoint["nb_epochs_finished"]
1304         model.load_state_dict(checkpoint["model_state"])
1305         torch.set_rng_state(checkpoint["rng_state"])
1306         if torch.cuda.is_available():
1307             torch.cuda.set_rng_state(checkpoint["cuda_rng_state"])
1308
1309         log_string(f"checkpoint loaded with {nb_epochs_finished} epochs finished.")
1310
1311     except FileNotFoundError:
1312         log_string("starting from scratch.")
1313
1314     except:
1315         log_string("error when loading the checkpoint.")
1316         exit(1)
1317
1318 ######################################################################
1319
1320 nb_epochs = args.nb_epochs if args.nb_epochs > 0 else nb_epochs_default
1321
1322 token_count = 0
1323 for input in task.batches(split="train"):
1324     token_count += F.one_hot(input, num_classes=task.vocabulary_size()).sum((0, 1))
1325 token_probas = token_count / token_count.sum()
1326 entropy = -torch.xlogy(token_probas, token_probas).sum()
1327 train_set_perplexity = math.exp(entropy)
1328
1329 ##############################
1330
1331 if args.learning_rate_schedule == "cos":
1332     learning_rate_schedule = {}
1333     for n_epoch in range(args.nb_epochs):
1334         u = n_epoch / args.nb_epochs * math.pi
1335         learning_rate_schedule[n_epoch] = args.learning_rate * 0.5 * (1 + math.cos(u))
1336 else:
1337     u = {
1338         int(k): float(v)
1339         for k, v in [
1340             tuple(x.split(":")) for x in args.learning_rate_schedule.split(",")
1341         ]
1342     }
1343
1344     learning_rate_schedule = {}
1345     learning_rate = args.learning_rate
1346     for n_epoch in range(args.nb_epochs):
1347         if n_epoch in u:
1348             learning_rate = u[n_epoch]
1349         learning_rate_schedule[n_epoch] = learning_rate
1350
1351 log_string(f"learning_rate_schedule {learning_rate_schedule}")
1352
1353 ##############################
1354
1355 nb_samples_seen = 0
1356
1357 if nb_epochs_finished >= nb_epochs:
1358     task.produce_results(nb_epochs_finished, model)
1359
1360 for n_epoch in range(nb_epochs_finished, nb_epochs):
1361     learning_rate = learning_rate_schedule[n_epoch]
1362
1363     log_string(f"learning_rate {learning_rate}")
1364
1365     if args.optim == "sgd":
1366         optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
1367     elif args.optim == "adam":
1368         optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
1369     elif args.optim == "adamw":
1370         optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate)
1371     else:
1372         raise ValueError(f"Unknown optimizer {args.optim}.")
1373
1374     model.train()
1375
1376     nb_train_samples, acc_train_loss = 0, 0.0
1377
1378     for input in task.batches(split="train"):
1379         input = input.to(device)
1380         output = model(mygpt.BracketedSequence(input)).x
1381         loss = F.cross_entropy(output.transpose(1, 2), input)
1382         acc_train_loss += loss.item() * input.size(0)
1383         nb_train_samples += input.size(0)
1384         nb_samples_seen += input.size(0)
1385
1386         optimizer.zero_grad()
1387         loss.backward()
1388         optimizer.step()
1389
1390     with torch.autograd.no_grad():
1391         model.eval()
1392
1393         nb_test_samples, acc_test_loss = 0, 0.0
1394
1395         for input in task.batches(split="test"):
1396             input = input.to(device)
1397
1398             output = model(mygpt.BracketedSequence(input)).x
1399             loss = F.cross_entropy(output.transpose(1, 2), input)
1400             acc_test_loss += loss.item() * input.size(0)
1401             nb_test_samples += input.size(0)
1402
1403         train_perplexity = math.exp(min(100, acc_train_loss / nb_train_samples))
1404         test_perplexity = math.exp(min(100, acc_test_loss / nb_test_samples))
1405
1406         log_string(
1407             f"perplexity {n_epoch} train_set {train_set_perplexity} train_prediction {train_perplexity} test_prediction {test_perplexity}"
1408         )
1409
1410         task.produce_results(n_epoch, model)
1411
1412     checkpoint = {
1413         "nb_epochs_finished": n_epoch + 1,
1414         "model_state": model.state_dict(),
1415         "rng_state": torch.get_rng_state(),
1416     }
1417
1418     if torch.cuda.is_available():
1419         checkpoint["cuda_rng_state"] = torch.cuda.get_rng_state()
1420
1421     checkpoint_name = os.path.join(args.result_dir, args.checkpoint_name)
1422     torch.save(checkpoint, checkpoint_name)
1423     log_string(f"saved checkpoint {checkpoint_name}")
1424
1425 ######################################################################