Update.
[picoclvr.git] / main.py
1 #!/usr/bin/env python
2
3 # Any copyright is dedicated to the Public Domain.
4 # https://creativecommons.org/publicdomain/zero/1.0/
5
6 # Written by Francois Fleuret <francois@fleuret.org>
7
8 # torch.backends.cuda.matmul.allow_tf23
9 # torch.autocast(torch.bfloat16)
10
11 import math, sys, argparse, time, tqdm, os
12
13 import torch, torchvision
14 from torch import nn
15 from torch.nn import functional as F
16
17 import mygpt, tensorstack
18
19 ######################################################################
20
21 if torch.cuda.is_available():
22     device = torch.device("cuda")
23     torch.backends.cuda.matmul.allow_tf32 = True
24 else:
25     device = torch.device("cpu")
26
27 ######################################################################
28
29 parser = argparse.ArgumentParser(
30     description="An implementation of GPT with cache.",
31     formatter_class=argparse.ArgumentDefaultsHelpFormatter,
32 )
33
34 parser.add_argument(
35     "--task", type=str, default="picoclvr", help="picoclvr, mnist, maze, snake, stack"
36 )
37
38 parser.add_argument("--log_filename", type=str, default="train.log", help=" ")
39
40 parser.add_argument("--result_dir", type=str, default="results_default")
41
42 parser.add_argument("--seed", type=int, default=0)
43
44 parser.add_argument("--nb_epochs", type=int, default=None)
45
46 parser.add_argument("--batch_size", type=int, default=None)
47
48 parser.add_argument("--nb_train_samples", type=int, default=None)
49
50 parser.add_argument("--nb_test_samples", type=int, default=None)
51
52 parser.add_argument("--optim", type=str, default="adam")
53
54 parser.add_argument("--learning_rate", type=float, default=1e-4)
55
56 parser.add_argument("--learning_rate_schedule", type=str, default="10: 2e-5,30: 4e-6")
57
58 parser.add_argument("--dim_model", type=int, default=512)
59
60 parser.add_argument("--dim_keys", type=int, default=64)
61
62 parser.add_argument("--dim_hidden", type=int, default=2048)
63
64 parser.add_argument("--nb_heads", type=int, default=8)
65
66 parser.add_argument("--nb_blocks", type=int, default=12)
67
68 parser.add_argument("--dropout", type=float, default=0.1)
69
70 parser.add_argument("--deterministic_synthesis", action="store_true", default=False)
71
72 parser.add_argument("--no_checkpoint", action="store_true", default=False)
73
74 parser.add_argument("--overwrite_results", action="store_true", default=False)
75
76 parser.add_argument("--checkpoint_name", type=str, default="checkpoint.pth")
77
78 ##############################
79 # picoclvr options
80
81 parser.add_argument("--picoclvr_nb_colors", type=int, default=5)
82
83 parser.add_argument("--picoclvr_height", type=int, default=12)
84
85 parser.add_argument("--picoclvr_width", type=int, default=16)
86
87 parser.add_argument("--picocvlr_prune_properties", type=str, default="none")
88
89 ##############################
90 # Maze options
91
92 parser.add_argument("--maze_height", type=int, default=13)
93
94 parser.add_argument("--maze_width", type=int, default=21)
95
96 parser.add_argument("--maze_nb_walls", type=int, default=15)
97
98 ##############################
99 # Snake options
100
101 parser.add_argument("--snake_height", type=int, default=6)
102
103 parser.add_argument("--snake_width", type=int, default=8)
104
105 parser.add_argument("--snake_nb_colors", type=int, default=5)
106
107 parser.add_argument("--snake_length", type=int, default=200)
108
109 ##############################
110 # Snake options
111
112 parser.add_argument("--stack_nb_steps", type=int, default=100)
113
114 parser.add_argument("--stack_nb_stacks", type=int, default=1)
115
116 parser.add_argument("--stack_nb_digits", type=int, default=3)
117
118 parser.add_argument("--stack_fraction_values_for_train", type=float, default=None)
119
120 ######################################################################
121
122 args = parser.parse_args()
123
124 assert args.picocvlr_prune_properties in {"none", "train+eval", "eval"}
125
126 try:
127     os.mkdir(args.result_dir)
128 except FileExistsError:
129     if not args.overwrite_results:
130         print(f"result directory {args.result_dir} already exists")
131         exit(1)
132
133 log_file = open(os.path.join(args.result_dir, args.log_filename), "a")
134
135 if args.seed >= 0:
136     # torch.backends.cudnn.deterministic = True
137     # torch.backends.cudnn.benchmark = False
138     # torch.use_deterministic_algorithms(True)
139     torch.manual_seed(args.seed)
140     if torch.cuda.is_available():
141         torch.cuda.manual_seed_all(args.seed)
142
143 ######################################################################
144
145 default_args = {
146     "picoclvr": {
147         "nb_epochs": 25,
148         "batch_size": 25,
149         "nb_train_samples": 250000,
150         "nb_test_samples": 10000,
151     },
152     "mnist": {
153         "nb_epochs": 25,
154         "batch_size": 10,
155         "nb_train_samples": 250000,
156         "nb_test_samples": 10000,
157     },
158     "maze": {
159         "nb_epochs": 25,
160         "batch_size": 25,
161         "nb_train_samples": 250000,
162         "nb_test_samples": 10000,
163     },
164     "snake": {
165         "nb_epochs": 5,
166         "batch_size": 25,
167         "nb_train_samples": 250000,
168         "nb_test_samples": 10000,
169     },
170     "stack": {
171         "nb_epochs": 5,
172         "batch_size": 25,
173         "nb_train_samples": 100000,
174         "nb_test_samples": 1000,
175     },
176 }
177
178 if args.task in default_args:
179     for k, v in default_args[args.task].items():
180         if getattr(args, k) is None:
181             setattr(args, k, v)
182
183 ######################################################################
184
185
186 def log_string(s):
187     t = time.strftime("%Y%m%d-%H:%M:%S ", time.localtime())
188
189     if log_file is not None:
190         log_file.write(t + s + "\n")
191         log_file.flush()
192
193     print(t + s)
194     sys.stdout.flush()
195
196
197 for n in vars(args):
198     log_string(f"args.{n} {getattr(args, n)}")
199
200 ######################################################################
201
202
203 # ra_mask is boolean, with 1s on the values to generate
204
205
206 def masked_inplace_autoregression(
207     model,
208     batch_size,
209     input,
210     ar_mask,
211     forbidden_tokens=None,
212     progress_bar_desc="autoregression",
213     device=torch.device("cpu"),
214 ):
215     # p = logits.softmax(1)
216     # entropy[:,s]= p.xlogy(p).sum(1) / math.log(2)
217     batches = zip(input.split(batch_size), ar_mask.split(batch_size))
218     if progress_bar_desc is not None:
219         batches = tqdm.tqdm(
220             batches,
221             dynamic_ncols=True,
222             desc=progress_bar_desc,
223             total=input.size(0) // batch_size,
224         )
225     for input, ar_mask in batches:
226         i = (ar_mask.sum(0) > 0).nonzero()
227         if i.min() > 0:
228             model(
229                 mygpt.BracketedSequence(input, 0, i.min())
230             )  # Needed to initialize the model's cache
231         for s in range(i.min(), i.max() + 1):
232             output = model(mygpt.BracketedSequence(input, s, 1)).x
233             logits = output[:, s]
234             if forbidden_tokens is not None:
235                 logits = logits.masked_fill(forbidden_tokens, float("-inf"))
236             if args.deterministic_synthesis:
237                 t_next = logits.argmax(1)
238             else:
239                 dist = torch.distributions.categorical.Categorical(logits=logits)
240                 t_next = dist.sample()
241             input[:, s] = ar_mask[:, s] * t_next + (1 - ar_mask[:, s]) * input[:, s]
242
243
244 ######################################################################
245
246
247 class Task:
248     def batches(self, split="train"):
249         pass
250
251     def vocabulary_size(self):
252         pass
253
254     def produce_results(self, n_epoch, model):
255         pass
256
257
258 ######################################################################
259
260 import picoclvr
261
262
263 class TaskPicoCLVR(Task):
264     # Make a tensor from a list of strings
265     def tensorize(self, descr):
266         token_descr = [s.strip().split(" ") for s in descr]
267         l = max([len(s) for s in token_descr])
268         token_descr = [s + ["<nul>"] * (l - len(s)) for s in token_descr]
269         id_descr = [[self.token2id[u] for u in s] for s in token_descr]
270         return torch.tensor(id_descr, device=self.device)
271
272     # Make a list of strings from a tensor
273     def detensorize(self, x):
274         return [" ".join([self.id2token[t.item()] for t in r]) for r in x]
275
276     # trim all the tensors in the tuple z to remove as much token from
277     # left and right in the first tensor. If z is a tuple, all its
278     # elements are trimed according to the triming for the first
279     def trim(self, z, token="<nul>"):
280         n = self.token2id[token]
281         if type(z) == tuple:
282             x = z[0]
283             i = (1 - (F.pad(x, (1, 1), value=n) == n).min(0).values.long()).cumsum(0)
284             a, b = (i == 0).nonzero().max(), (i == i.max()).nonzero().min()
285             return tuple([t[:, a:b] for t in z])
286         else:
287             i = (1 - (F.pad(z, (1, 1), value=n) == n).min(0).values.long()).cumsum(0)
288             a, b = (i == 0).nonzero().max(), (i == i.max()).nonzero().min()
289             return z[:, a:b]
290
291     ######################
292     # Not the cleanest part of the code
293
294     # Extract the last image of each sequence, from the last <img>
295     # included, and set to <nul> all the tokens from the beginning of
296     # that image to the end
297     def excise_last_image(self, input):
298         t_img, t_nul = self.token2id["<img>"], self.token2id["<nul>"]
299         nb_img_tokens = self.height * self.width + 1
300
301         input = input.clone()
302         t = (input == t_img).long()
303         tail_masks = (t.cumsum(dim=1) == t.sum(dim=1, keepdim=True)).long()
304         i = (t * tail_masks).nonzero(as_tuple=True)
305         j = (
306             i[0][:, None],
307             i[1][:, None] + torch.arange(nb_img_tokens, device=input.device)[None, :],
308         )
309         images = self.trim(input[j])
310         input[j] = t_nul
311         loss_masks = 1 - tail_masks
312         input, loss_masks = self.trim((input, loss_masks))
313         return input, loss_masks, images
314
315     def add_true_image(self, input, images, loss_masks):
316         t_nul = self.token2id["<nul>"]
317         nb_img_tokens = self.height * self.width + 1
318         input = F.pad(input, (0, nb_img_tokens), value=t_nul)
319         loss_masks = F.pad(loss_masks, (0, nb_img_tokens), value=0)
320         t = (input == t_nul).long()
321         i = (t.cumsum(dim=1) == 1).nonzero(as_tuple=True)
322         j = (
323             i[0][:, None],
324             i[1][:, None] + torch.arange(nb_img_tokens, device=input.device)[None, :],
325         )
326         input[j] = images
327         loss_masks[j] = 1
328         input, loss_masks = self.trim((input, loss_masks))
329         return input, loss_masks
330
331     def add_generated_image(self, input, loss_masks, model):
332         t_img, t_nul = self.token2id["<img>"], self.token2id["<nul>"]
333         nb_img_tokens = self.height * self.width + 1
334
335         input = F.pad(input, (0, nb_img_tokens), value=t_nul)
336         loss_masks = F.pad(loss_masks, (0, nb_img_tokens), value=0)
337         t = (input == t_nul).long()
338         i = (t.cumsum(dim=1) == 1).nonzero(as_tuple=True)
339         input[i] = t_img
340
341         j = (
342             i[0][:, None],
343             i[1][:, None]
344             + 1
345             + torch.arange(nb_img_tokens - 1, device=input.device)[None, :],
346         )
347         ar_masks = input.new_zeros(input.size(), dtype=torch.int64)
348         ar_masks[j] = 1
349         forbidden_tokens = (
350             torch.arange(self.vocabulary_size(), device=input.device) == t_nul
351         )
352         with torch.autograd.no_grad():
353             t = model.training
354             model.eval()
355             masked_inplace_autoregression(
356                 model,
357                 self.batch_size,
358                 input,
359                 ar_masks,
360                 forbidden_tokens,
361                 progress_bar_desc=None,
362                 device=self.device,
363             )
364             model.train(t)
365
366         input, loss_masks = self.trim((input, loss_masks))
367
368         return input, loss_masks
369
370     ######################
371
372     def __init__(
373         self,
374         nb_train_samples,
375         nb_test_samples,
376         batch_size,
377         height,
378         width,
379         nb_colors=5,
380         device=torch.device("cpu"),
381         pruner_train=None,
382         pruner_eval=None,
383     ):
384         def generate_descr(nb, cache_suffix, pruner):
385             return picoclvr.generate(
386                 nb,
387                 height=self.height,
388                 width=self.width,
389                 nb_colors=nb_colors,
390                 pruner=pruner,
391             )
392
393         self.height = height
394         self.width = width
395         self.batch_size = batch_size
396         self.device = device
397         self.pruner_train = pruner_train
398         self.pruner_eval = pruner_eval
399
400         param = {
401             "nb_train_samples": nb_train_samples,
402             "nb_test_samples": nb_test_samples,
403             "height": height,
404             "width": width,
405             "nb_colors": nb_colors,
406             "batch_size": batch_size,
407             "rng_state": list(torch.get_rng_state()),
408         }
409
410         log_string(
411             f"generating {nb_train_samples+nb_test_samples} samples (can take some time)"
412         )
413         self.train_descr = generate_descr(
414             nb_train_samples, "train", pruner=self.pruner_train
415         )
416         self.test_descr = generate_descr(nb_test_samples, "test", pruner=None)
417
418         # Build the tokenizer
419         tokens = {"<nul>", "<img>"}
420         for d in [self.train_descr, self.test_descr]:
421             for s in d:
422                 for t in s.strip().split(" "):
423                     tokens.add(t)
424         # make this set a sorted list to get the same tensors given
425         # the same descr
426         tokens = list(tokens)
427         tokens.sort()
428         self.token2id = dict([(t, n) for n, t in enumerate(tokens)])
429         self.id2token = dict([(n, t) for n, t in enumerate(tokens)])
430
431         # Tokenize the train and test sets
432         self.train_input = self.tensorize(self.train_descr)
433         self.test_input = self.tensorize(self.test_descr)
434
435     def batches(self, split="train"):
436         assert split in {"train", "test"}
437         input = self.train_input if split == "train" else self.test_input
438         for batch in tqdm.tqdm(
439             input.split(self.batch_size), dynamic_ncols=True, desc=f"epoch-{split}"
440         ):
441             yield self.trim(batch)
442
443     def vocabulary_size(self):
444         return len(self.token2id)
445
446     def compute_missing_properties(self, n_epoch, model, pruner=None):
447         acc_nb_requested_properties = []
448         acc_nb_missing_properties = []
449         acc_nb_results = 0
450
451         for input in tqdm.tqdm(
452             self.test_input.split(self.batch_size),
453             dynamic_ncols=True,
454             desc=f"test-properties",
455         ):
456             tape, loss_masks, _ = self.excise_last_image(input)
457             tape, loss_masks = self.add_generated_image(tape, loss_masks, model)
458             result_descr = self.detensorize(tape)
459             np = picoclvr.nb_properties(
460                 result_descr,
461                 height=self.height,
462                 width=self.width,
463                 pruner=pruner,
464             )
465             nb_requested_properties, _, nb_missing_properties = zip(*np)
466             acc_nb_requested_properties += nb_requested_properties
467             acc_nb_missing_properties += nb_missing_properties
468             acc_nb_results += len(result_descr)
469
470         nb_requested_properties = sum(acc_nb_requested_properties)
471         nb_missing_properties = sum(acc_nb_missing_properties)
472
473         prefix = "" if pruner is None else "pruned_"
474         log_string(f"nb_{prefix}samples {n_epoch} {acc_nb_results}")
475         log_string(
476             f"property_{prefix}nb {n_epoch} requested {sum(acc_nb_requested_properties)} missing {sum(acc_nb_missing_properties)}"
477         )
478         log_string(
479             f"property_{prefix}miss {n_epoch} {100*nb_missing_properties/nb_requested_properties:.02f}%"
480         )
481
482     ######################################################################
483
484     def produce_results(self, n_epoch, model):
485         self.compute_missing_properties(n_epoch, model)
486
487         if self.pruner_eval is not None:
488             self.compute_missing_properties(n_epoch, model, self.pruner_eval)
489
490         nb_tokens_to_generate = self.height * self.width + 3
491         result_descr = []
492         nb_per_primer = 8
493         primer = []
494
495         for primer_descr in [
496             "red above green <sep> green top <sep> blue right of red",
497             "there is red <sep> there is yellow <sep> there is blue",
498             "red below yellow <sep> yellow below green <sep> green below blue <sep> red right <sep> yellow left <sep> green right <sep> blue left",
499             "green bottom <sep> yellow bottom <sep> green left of blue <sep> yellow right of blue <sep> blue top",
500         ]:
501             primer += [primer_descr] * nb_per_primer
502
503         tape = self.tensorize(primer)
504         loss_masks = 1 - (tape == self.token2id["<nul>"]).long()
505         tape, loss_masks = self.add_generated_image(tape, loss_masks, model)
506         result_descr = self.detensorize(tape)
507
508         np = picoclvr.nb_properties(result_descr, height=self.height, width=self.width)
509
510         acc_nb_requested_properties, _, acc_nb_missing_properties = zip(*np)
511         acc_nb_results = len(result_descr)
512
513         nb_requested_properties = sum(acc_nb_requested_properties)
514         nb_missing_properties = sum(acc_nb_missing_properties)
515
516         prefix = "demo_"
517         log_string(f"nb_{prefix}samples {n_epoch} {acc_nb_results}")
518         log_string(
519             f"property_{prefix}nb {n_epoch} requested {sum(acc_nb_requested_properties)} missing {sum(acc_nb_missing_properties)}"
520         )
521         log_string(
522             f"property_{prefix}miss {n_epoch} {100*nb_missing_properties/nb_requested_properties:.02f}%"
523         )
524
525         img = picoclvr.descr2img(result_descr, height=self.height, width=self.width)
526
527         if img.dim() == 5:
528             if img.size(1) == 1:
529                 img = F.pad(img.squeeze(1), pad=(1, 1, 1, 1), value=64)
530             else:
531                 img = torch.cat(
532                     [
533                         torchvision.utils.make_grid(x, padding=1, pad_value=64)[None]
534                         for x in img
535                     ],
536                     0,
537                 )
538
539         image_name = os.path.join(args.result_dir, f"picoclvr_result_{n_epoch:04d}.png")
540         torchvision.utils.save_image(
541             img / 255.0, image_name, nrow=nb_per_primer, padding=1, pad_value=0.0
542         )
543         log_string(f"wrote {image_name}")
544
545
546 ######################################################################
547
548
549 class TaskMNIST(Task):
550     def __init__(self, batch_size, device=torch.device("cpu")):
551         self.device = device
552         self.batch_size = batch_size
553
554     def batches(self, split="train"):
555         assert split in {"train", "test"}
556         data_set = torchvision.datasets.MNIST(
557             root="./data", train=(split == "train"), download=True
558         )
559         data_input = data_set.data.view(-1, 28 * 28).long()
560         if args.nb_train_samples is not None:
561             data_input = data_input[: args.nb_train_samples]
562         for batch in tqdm.tqdm(
563             data_input.split(self.batch_size), desc=f"epoch-{split}"
564         ):
565             yield batch
566
567     def vocabulary_size(self):
568         return 256
569
570     def produce_results(self, n_epoch, model):
571         results = torch.empty(64, 28 * 28, device=self.device, dtype=torch.int64)
572         ar_mask = torch.full_like(results, 1)
573         masked_inplace_autoregression(
574             model, self.batch_size, results, ar_mask, device=self.device
575         )
576         image_name = os.path.join(args.result_dir, f"mnist_result_{n_epoch:04d}.png")
577         torchvision.utils.save_image(
578             1 - results.reshape(-1, 1, 28, 28) / 255.0,
579             image_name,
580             nrow=16,
581             pad_value=0.8,
582         )
583         log_string(f"wrote {image_name}")
584
585
586 ######################################################################
587
588 import maze
589
590
591 class TaskMaze(Task):
592     def map2seq(self, *m):
593         return torch.cat([x.flatten(1) for x in m], 1)
594
595     def seq2map(self, s):
596         s = s.reshape(s.size(0), -1, self.height, self.width)
597         return (s[:, k] for k in range(s.size(1)))
598
599     def __init__(
600         self,
601         nb_train_samples,
602         nb_test_samples,
603         batch_size,
604         height,
605         width,
606         nb_walls,
607         device=torch.device("cpu"),
608     ):
609         self.batch_size = batch_size
610         self.height = height
611         self.width = width
612         self.device = device
613
614         train_mazes, train_paths, _ = maze.create_maze_data(
615             nb_train_samples,
616             height=height,
617             width=width,
618             nb_walls=nb_walls,
619             progress_bar=lambda x: tqdm.tqdm(x, dynamic_ncols=True, desc=f"data-train"),
620         )
621         self.train_input = self.map2seq(train_mazes.to(device), train_paths.to(device))
622
623         test_mazes, test_paths, _ = maze.create_maze_data(
624             nb_test_samples,
625             height=height,
626             width=width,
627             nb_walls=nb_walls,
628             progress_bar=lambda x: tqdm.tqdm(x, dynamic_ncols=True, desc=f"data-test"),
629         )
630         self.test_input = self.map2seq(test_mazes.to(device), test_paths.to(device))
631
632         self.nb_codes = max(self.train_input.max(), self.test_input.max()) + 1
633
634     def batches(self, split="train", nb_to_use=-1, desc=None):
635         assert split in {"train", "test"}
636         input = self.train_input if split == "train" else self.test_input
637         if nb_to_use > 0:
638             input = input[:nb_to_use]
639         if desc is None:
640             desc = f"epoch-{split}"
641         for batch in tqdm.tqdm(
642             input.split(self.batch_size), dynamic_ncols=True, desc=desc
643         ):
644             yield batch
645
646     def vocabulary_size(self):
647         return self.nb_codes
648
649     def compute_error(self, model, split="train", nb_to_use=-1):
650         nb_total, nb_correct = 0, 0
651         count = torch.zeros(
652             self.width * self.height,
653             self.width * self.height,
654             device=self.device,
655             dtype=torch.int64,
656         )
657         for input in tqdm.tqdm(
658             task.batches(split, nb_to_use),
659             dynamic_ncols=True,
660             desc=f"test-mazes",
661         ):
662             result = input.clone()
663             ar_mask = result.new_zeros(result.size())
664             ar_mask[:, self.height * self.width :] = 1
665             result *= 1 - ar_mask
666             masked_inplace_autoregression(
667                 model,
668                 self.batch_size,
669                 result,
670                 ar_mask,
671                 progress_bar_desc=None,
672                 device=self.device,
673             )
674             mazes, paths = self.seq2map(result)
675             path_correctness = maze.path_correctness(mazes, paths)
676             nb_correct += path_correctness.long().sum()
677             nb_total += mazes.size(0)
678
679             optimal_path_lengths = (
680                 (input[:, self.height * self.width :] == maze.v_path).long().sum(1)
681             )
682             predicted_path_lengths = (
683                 (result[:, self.height * self.width :] == maze.v_path).long().sum(1)
684             )
685             optimal_path_lengths = optimal_path_lengths[path_correctness]
686             predicted_path_lengths = predicted_path_lengths[path_correctness]
687             count[optimal_path_lengths, predicted_path_lengths] += 1
688
689         if count.max() == 0:
690             count = None
691         else:
692             count = count[
693                 : count.sum(1).nonzero().max() + 1, : count.sum(0).nonzero().max() + 1
694             ]
695
696         return nb_total, nb_correct, count
697
698     def produce_results(self, n_epoch, model):
699         with torch.autograd.no_grad():
700             t = model.training
701             model.eval()
702
703             train_nb_total, train_nb_correct, count = self.compute_error(
704                 model, "train", nb_to_use=1000
705             )
706             log_string(
707                 f"accuracy_train nb_total {train_nb_total} nb_correct {train_nb_correct} accuracy {(100.0*train_nb_correct)/train_nb_total:.02f}%"
708             )
709
710             test_nb_total, test_nb_correct, count = self.compute_error(
711                 model, "test", nb_to_use=1000
712             )
713             log_string(
714                 f"accuracy_test nb_total {test_nb_total} nb_correct {test_nb_correct} accuracy {(100.0*test_nb_correct)/test_nb_total:.02f}%"
715             )
716
717             if count is not None:
718                 proportion_optimal = count.diagonal().sum().float() / count.sum()
719                 log_string(f"proportion_optimal_test {proportion_optimal*100:.02f}%")
720                 with open(
721                     os.path.join(args.result_dir, f"maze_result_{n_epoch:04d}.txt"), "w"
722                 ) as f:
723                     for i in range(count.size(0)):
724                         for j in range(count.size(1)):
725                             eol = " " if j < count.size(1) - 1 else "\n"
726                             f.write(f"{count[i,j]}{eol}")
727
728             input = self.test_input[:48]
729             result = input.clone()
730             ar_mask = result.new_zeros(result.size())
731             ar_mask[:, self.height * self.width :] = 1
732             result *= 1 - ar_mask
733             masked_inplace_autoregression(
734                 model, self.batch_size, result, ar_mask, device=self.device
735             )
736
737             mazes, paths = self.seq2map(input)
738             _, predicted_paths = self.seq2map(result)
739
740             filename = os.path.join(args.result_dir, f"maze_result_{n_epoch:04d}.png")
741             maze.save_image(
742                 filename,
743                 mazes=mazes,
744                 target_paths=paths,
745                 predicted_paths=predicted_paths,
746                 path_correct=maze.path_correctness(mazes, predicted_paths),
747                 path_optimal=maze.path_optimality(paths, predicted_paths),
748             )
749             log_string(f"wrote {filename}")
750
751             model.train(t)
752
753
754 ######################################################################
755
756
757 import snake
758
759
760 class TaskSnake(Task):
761     def __init__(
762         self,
763         nb_train_samples,
764         nb_test_samples,
765         batch_size,
766         height,
767         width,
768         nb_colors,
769         length,
770         prompt_length,
771         device=torch.device("cpu"),
772     ):
773         self.batch_size = batch_size
774         self.height = height
775         self.width = width
776         self.device = device
777         self.prompt_length = prompt_length
778
779         self.train_input, self.train_prior_visits, _, _ = snake.generate_sequences(
780             nb_train_samples,
781             height,
782             width,
783             nb_colors,
784             length,
785             prompt_length,
786             self.device,
787         )
788         self.test_input, self.test_prior_visits, _, _ = snake.generate_sequences(
789             nb_test_samples,
790             height,
791             width,
792             nb_colors,
793             length,
794             prompt_length,
795             self.device,
796         )
797
798         self.nb_codes = max(self.train_input.max(), self.test_input.max()) + 1
799
800     def batches(self, split="train", nb_to_use=-1, desc=None):
801         assert split in {"train", "test"}
802         input = self.train_input if split == "train" else self.test_input
803         if nb_to_use > 0:
804             input = input[:nb_to_use]
805         if desc is None:
806             desc = f"epoch-{split}"
807         for batch in tqdm.tqdm(
808             input.split(self.batch_size), dynamic_ncols=True, desc=desc
809         ):
810             yield batch
811
812     def vocabulary_size(self):
813         return self.nb_codes
814
815     def produce_results(self, n_epoch, model):
816         with torch.autograd.no_grad():
817             t = model.training
818             model.eval()
819
820             def compute_nb_correct(input, prior_visits):
821                 result = input.clone()
822                 i = torch.arange(result.size(1), device=result.device)[None, :]
823                 ar_mask = (
824                     torch.logical_and(i >= self.prompt_length * 2, i % 2 == 0)
825                     .long()
826                     .expand_as(result)
827                 )
828                 result *= 1 - ar_mask
829
830                 # snake.solver(result,ar_mask)
831
832                 masked_inplace_autoregression(
833                     model, self.batch_size, result, ar_mask, device=self.device
834                 )
835
836                 nb_total = ((prior_visits > 0) * ar_mask).sum()
837
838                 nb_correct = (
839                     (result == input).long() * (prior_visits > 0) * ar_mask
840                 ).sum()
841
842                 # nb_total = result.size(0)
843                 # nb_correct = ((result - input).abs().sum(1) == 0).sum()
844
845                 return nb_total, nb_correct
846
847             # train_nb_total, train_nb_correct = compute_nb_correct(
848             # self.train_input, self.train_prior_visits
849             # )
850
851             # log_string(
852             # f"accuracy_train nb_total {train_nb_total} nb_correct {train_nb_correct} accuracy {(100.0*train_nb_correct)/train_nb_total:.02f}%"
853             # )
854
855             test_nb_total, test_nb_correct = compute_nb_correct(
856                 self.test_input[:1000], self.test_prior_visits[:1000]
857             )
858
859             log_string(
860                 f"accuracy_test nb_total {test_nb_total} nb_correct {test_nb_correct} accuracy {(100.0*test_nb_correct)/test_nb_total:.02f}%"
861             )
862
863             model.train(t)
864
865
866 ######################################################################
867
868
869 import stack
870
871
872 class TaskStack(Task):
873     def __init__(
874         self,
875         nb_train_samples,
876         nb_test_samples,
877         batch_size,
878         nb_steps,
879         nb_stacks,
880         nb_digits,
881         fraction_values_for_train=None,
882         device=torch.device("cpu"),
883     ):
884         self.batch_size = batch_size
885         self.nb_steps = nb_steps
886         self.nb_stacks = nb_stacks
887         self.nb_digits = nb_digits
888         self.device = device
889
890         if fraction_values_for_train is None:
891             values_for_train = None
892             values_for_test = None
893         else:
894             all = torch.randperm(10**nb_digits)
895             nb_for_train = int(all.size(0) * fraction_values_for_train)
896             values_for_train = all[:nb_for_train]
897             values_for_test = all[nb_for_train:]
898
899         self.train_input, self.train_stack_counts = stack.generate_sequences(
900             nb_train_samples,
901             nb_steps,
902             nb_stacks,
903             nb_digits,
904             values_for_train,
905             self.device,
906         )
907
908         self.test_input, self.test_stack_counts = stack.generate_sequences(
909             nb_test_samples,
910             nb_steps,
911             nb_stacks,
912             nb_digits,
913             values_for_test,
914             self.device,
915         )
916
917         mask = self.test_input.clone()
918         stack.remove_popped_values(mask, self.nb_stacks, self.nb_digits)
919         mask = mask != self.test_input
920         counts = self.test_stack_counts.flatten()[mask.flatten()]
921         counts = F.one_hot(counts).sum(0)
922         log_string(f"stack_count {counts}")
923
924         self.nb_codes = max(self.train_input.max(), self.test_input.max()) + 1
925
926     def batches(self, split="train", nb_to_use=-1, desc=None):
927         assert split in {"train", "test"}
928         input = self.train_input if split == "train" else self.test_input
929         if nb_to_use > 0:
930             input = input[:nb_to_use]
931         if desc is None:
932             desc = f"epoch-{split}"
933         for batch in tqdm.tqdm(
934             input.split(self.batch_size), dynamic_ncols=True, desc=desc
935         ):
936             yield batch
937
938     def vocabulary_size(self):
939         return self.nb_codes
940
941     def produce_results(self, n_epoch, model):
942         with torch.autograd.no_grad():
943             t = model.training
944             model.eval()
945
946             def compute_nb_correct(input):
947                 result = input.clone()
948                 stack.remove_popped_values(result, self.nb_stacks, self.nb_digits)
949                 ar_mask = (result != input).long()
950                 masked_inplace_autoregression(
951                     model, self.batch_size, result, ar_mask, device=self.device
952                 )
953
954                 errors = ((result != input).long() * ar_mask).reshape(
955                     -1, 1 + self.nb_digits
956                 )
957                 ar_mask = ar_mask.reshape(-1, 1 + self.nb_digits)
958
959                 nb_total = ar_mask.max(1).values.sum()
960                 nb_correct = nb_total - errors.max(1).values.sum()
961
962                 return nb_total, nb_correct
963
964             test_nb_total, test_nb_correct = compute_nb_correct(self.test_input[:1000])
965
966             log_string(
967                 f"accuracy_test nb_total {test_nb_total} nb_correct {test_nb_correct} accuracy {(100.0*test_nb_correct)/test_nb_total:.02f}%"
968             )
969
970             #!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
971             input = self.test_input[:10, :50]
972             result = input.clone()
973             stack.remove_popped_values(result, self.nb_stacks, self.nb_digits)
974             ar_mask = (result != input).long()
975             for n in range(result.size(0)):
976                 log_string(
977                     f"test_before {stack.seq_to_str(result[n],nb_stacks=self.nb_stacks,nb_digits=self.nb_digits)}"
978                 )
979             masked_inplace_autoregression(
980                 model, self.batch_size, result, ar_mask, device=self.device
981             )
982             for n in range(result.size(0)):
983                 log_string(
984                     f"test_after  {stack.seq_to_str(result[n],nb_stacks=self.nb_stacks,nb_digits=self.nb_digits)}"
985                 )
986             #!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
987
988             model.train(t)
989
990
991 ######################################################################
992
993
994 def picoclvr_pruner_horizontal_green(p):
995     return not ("green" in p and ("left" in p or "right" in p))
996
997
998 picoclvr_pruner_train = (
999     picoclvr_pruner_horizontal_green
1000     if args.picocvlr_prune_properties in {"train+eval"}
1001     else None
1002 )
1003
1004 picoclvr_pruner_eval = (
1005     (lambda p: not picoclvr_pruner_horizontal_green(p))
1006     if args.picocvlr_prune_properties in {"train+eval", "eval"}
1007     else None
1008 )
1009
1010 ######################################################################
1011
1012 if args.task == "picoclvr":
1013     task = TaskPicoCLVR(
1014         nb_train_samples=args.nb_train_samples,
1015         nb_test_samples=args.nb_test_samples,
1016         batch_size=args.batch_size,
1017         height=args.picoclvr_height,
1018         width=args.picoclvr_width,
1019         nb_colors=args.picoclvr_nb_colors,
1020         device=device,
1021         pruner_train=picoclvr_pruner_train,
1022         pruner_eval=picoclvr_pruner_eval,
1023     )
1024
1025 elif args.task == "mnist":
1026     task = TaskMNIST(
1027         batch_size=args.batch_size,
1028         device=device,
1029     )
1030
1031 elif args.task == "maze":
1032     task = TaskMaze(
1033         nb_train_samples=args.nb_train_samples,
1034         nb_test_samples=args.nb_test_samples,
1035         batch_size=args.batch_size,
1036         height=args.maze_height,
1037         width=args.maze_width,
1038         nb_walls=args.maze_nb_walls,
1039         device=device,
1040     )
1041
1042 elif args.task == "snake":
1043     task = TaskSnake(
1044         nb_train_samples=args.nb_train_samples,
1045         nb_test_samples=args.nb_test_samples,
1046         batch_size=args.batch_size,
1047         height=args.snake_height,
1048         width=args.snake_width,
1049         nb_colors=args.snake_nb_colors,
1050         length=args.snake_length,
1051         prompt_length=args.snake_length // 2,
1052         device=device,
1053     )
1054
1055 elif args.task == "stack":
1056     task = TaskStack(
1057         nb_train_samples=args.nb_train_samples,
1058         nb_test_samples=args.nb_test_samples,
1059         batch_size=args.batch_size,
1060         nb_steps=args.stack_nb_steps,
1061         nb_stacks=args.stack_nb_stacks,
1062         nb_digits=args.stack_nb_digits,
1063         fraction_values_for_train=args.stack_fraction_values_for_train,
1064         device=device,
1065     )
1066
1067 else:
1068     raise ValueError(f"Unknown task {args.task}")
1069
1070 ######################################################################
1071
1072 log_string(f"device {device}")
1073
1074 vocabulary_size = task.vocabulary_size()
1075
1076 log_string(f"vocabulary_size {vocabulary_size}")
1077
1078 ##############################
1079
1080 model = mygpt.MyGPT(
1081     vocabulary_size=vocabulary_size,
1082     dim_model=args.dim_model,
1083     dim_keys=args.dim_keys,
1084     dim_hidden=args.dim_hidden,
1085     nb_heads=args.nb_heads,
1086     nb_blocks=args.nb_blocks,
1087     causal=True,
1088     dropout=args.dropout,
1089 )
1090
1091 model.to(device)
1092
1093 nb_parameters = sum(p.numel() for p in model.parameters())
1094 log_string(f"nb_parameters {nb_parameters} ({int(nb_parameters/1e6)}M)")
1095
1096 ######################################################################
1097
1098 nb_epochs_finished = 0
1099
1100 if args.no_checkpoint:
1101     log_string(f"not trying to load checkpoint.")
1102
1103 else:
1104     try:
1105         checkpoint_name = os.path.join(args.result_dir, args.checkpoint_name)
1106         checkpoint = torch.load(checkpoint_name)
1107         nb_epochs_finished = checkpoint["nb_epochs_finished"]
1108         model.load_state_dict(checkpoint["model_state"])
1109         torch.set_rng_state(checkpoint["rng_state"])
1110         if torch.cuda.is_available():
1111             torch.cuda.set_rng_state(checkpoint["cuda_rng_state"])
1112
1113         log_string(f"checkpoint loaded with {nb_epochs_finished} epochs finished.")
1114
1115     except FileNotFoundError:
1116         log_string("starting from scratch.")
1117
1118     except:
1119         log_string("error when loading the checkpoint.")
1120         exit(1)
1121
1122 ######################################################################
1123
1124 nb_epochs = args.nb_epochs if args.nb_epochs > 0 else nb_epochs_default
1125
1126 token_count = 0
1127 for input in task.batches(split="train"):
1128     token_count += F.one_hot(input, num_classes=task.vocabulary_size()).sum((0, 1))
1129 token_probas = token_count / token_count.sum()
1130 entropy = -torch.xlogy(token_probas, token_probas).sum()
1131 train_set_perplexity = math.exp(entropy)
1132
1133 ##############################
1134
1135 if args.learning_rate_schedule == "cos":
1136     learning_rate_schedule = {}
1137     for n_epoch in range(args.nb_epochs):
1138         u = n_epoch / args.nb_epochs * math.pi
1139         learning_rate_schedule[n_epoch] = args.learning_rate * 0.5 * (1 + math.cos(u))
1140 else:
1141     u = {
1142         int(k): float(v)
1143         for k, v in [
1144             tuple(x.split(":")) for x in args.learning_rate_schedule.split(",")
1145         ]
1146     }
1147
1148     learning_rate_schedule = {}
1149     learning_rate = args.learning_rate
1150     for n_epoch in range(args.nb_epochs):
1151         if n_epoch in u:
1152             learning_rate = u[n_epoch]
1153         learning_rate_schedule[n_epoch] = learning_rate
1154
1155 log_string(f"learning_rate_schedule {learning_rate_schedule}")
1156
1157 ##############################
1158
1159 nb_samples_seen = 0
1160
1161 if nb_epochs_finished >= nb_epochs:
1162     task.produce_results(nb_epochs_finished, model)
1163
1164 for n_epoch in range(nb_epochs_finished, nb_epochs):
1165     learning_rate = learning_rate_schedule[n_epoch]
1166
1167     log_string(f"learning_rate {learning_rate}")
1168
1169     if args.optim == "sgd":
1170         optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
1171     elif args.optim == "adam":
1172         optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
1173     elif args.optim == "adamw":
1174         optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate)
1175     else:
1176         raise ValueError(f"Unknown optimizer {args.optim}.")
1177
1178     model.train()
1179
1180     nb_train_samples, acc_train_loss = 0, 0.0
1181
1182     for input in task.batches(split="train"):
1183         input = input.to(device)
1184         output = model(mygpt.BracketedSequence(input)).x
1185         loss = F.cross_entropy(output.transpose(1, 2), input)
1186         acc_train_loss += loss.item() * input.size(0)
1187         nb_train_samples += input.size(0)
1188         nb_samples_seen += input.size(0)
1189
1190         optimizer.zero_grad()
1191         loss.backward()
1192         optimizer.step()
1193
1194     with torch.autograd.no_grad():
1195         model.eval()
1196
1197         nb_test_samples, acc_test_loss = 0, 0.0
1198
1199         for input in task.batches(split="test"):
1200             input = input.to(device)
1201
1202             output = model(mygpt.BracketedSequence(input)).x
1203             loss = F.cross_entropy(output.transpose(1, 2), input)
1204             acc_test_loss += loss.item() * input.size(0)
1205             nb_test_samples += input.size(0)
1206
1207         train_perplexity = math.exp(min(100, acc_train_loss / nb_train_samples))
1208         test_perplexity = math.exp(min(100, acc_test_loss / nb_test_samples))
1209
1210         log_string(
1211             f"perplexity {n_epoch} train_set {train_set_perplexity} train_prediction {train_perplexity} test_prediction {test_perplexity}"
1212         )
1213
1214         task.produce_results(n_epoch, model)
1215
1216     checkpoint = {
1217         "nb_epochs_finished": n_epoch + 1,
1218         "model_state": model.state_dict(),
1219         "rng_state": torch.get_rng_state(),
1220     }
1221
1222     if torch.cuda.is_available():
1223         checkpoint["cuda_rng_state"] = torch.cuda.get_rng_state()
1224
1225     checkpoint_name = os.path.join(args.result_dir, args.checkpoint_name)
1226     torch.save(checkpoint, checkpoint_name)
1227     log_string(f"saved checkpoint {checkpoint_name}")
1228
1229 ######################################################################