3 # Any copyright is dedicated to the Public Domain.
4 # https://creativecommons.org/publicdomain/zero/1.0/
6 # Written by Francois Fleuret <francois@fleuret.org>
8 # torch.backends.cuda.matmul.allow_tf23
9 # torch.autocast(torch.bfloat16)
11 import math, sys, argparse, time, tqdm, itertools, os
13 import torch, torchvision
15 from torch.nn import functional as F
17 import mygpt, tensorstack
19 ######################################################################
21 if torch.cuda.is_available():
22 device = torch.device("cuda")
23 torch.backends.cuda.matmul.allow_tf32 = True
25 device = torch.device("cpu")
27 ######################################################################
29 parser = argparse.ArgumentParser(description="A maze shortest path solving with a GPT.")
31 parser.add_argument("--log_filename", type=str, default="train.log")
33 parser.add_argument("--result_dir", type=str, default="results_default")
35 parser.add_argument("--seed", type=int, default=0)
37 parser.add_argument("--nb_epochs", type=int, default=25)
39 parser.add_argument("--nb_train_samples", type=int, default=200000)
41 parser.add_argument("--nb_test_samples", type=int, default=50000)
43 parser.add_argument("--batch_size", type=int, default=25)
45 parser.add_argument("--optim", type=str, default="adam")
47 parser.add_argument("--learning_rate", type=float, default=1e-3)
50 "--learning_rate_schedule", type=str, default="10: 2e-4,20: 4e-5,30: 8e-6"
53 parser.add_argument("--dim_model", type=int, default=512)
55 parser.add_argument("--dim_keys", type=int, default=64)
57 parser.add_argument("--dim_hidden", type=int, default=2048)
59 parser.add_argument("--nb_heads", type=int, default=8)
61 parser.add_argument("--nb_blocks", type=int, default=12)
63 parser.add_argument("--dropout", type=float, default=0.1)
65 parser.add_argument("--deterministic_synthesis", action="store_true", default=False)
67 parser.add_argument("--no_checkpoint", action="store_true", default=False)
69 parser.add_argument("--overwrite_results", action="store_true", default=False)
71 parser.add_argument("--checkpoint_name", type=str, default="checkpoint.pth")
73 ##############################
76 parser.add_argument("--maze_height", type=int, default=13)
78 parser.add_argument("--maze_width", type=int, default=21)
80 parser.add_argument("--maze_nb_walls", type=int, default=15)
82 ##############################
85 parser.add_argument("--oneshot", action="store_true", default=False)
87 parser.add_argument("--oneshot_input", type=str, default="head")
89 parser.add_argument("--oneshot_output", type=str, default="trace")
91 ######################################################################
93 args = parser.parse_args()
96 os.mkdir(args.result_dir)
97 except FileExistsError:
98 if not args.overwrite_results:
99 print(f"result directory {args.result_dir} already exists")
102 log_file = open(os.path.join(args.result_dir, args.log_filename), "a")
105 # torch.backends.cudnn.deterministic = True
106 # torch.backends.cudnn.benchmark = False
107 # torch.use_deterministic_algorithms(True)
108 torch.manual_seed(args.seed)
109 if torch.cuda.is_available():
110 torch.cuda.manual_seed_all(args.seed)
112 ######################################################################
116 t = time.strftime("%Y%m%d-%H:%M:%S ", time.localtime())
118 if log_file is not None:
119 log_file.write(t + s + "\n")
127 log_string(f"args.{n} {getattr(args, n)}")
129 ######################################################################
132 def random_order(result, fixed_len):
133 order = torch.rand(result.size(), device=result.device)
134 order[:, :fixed_len] = torch.linspace(-2, -1, fixed_len, device=order.device)
135 return order.sort(1).indices
138 def shuffle(x, order, reorder=False):
140 order = order.unsqueeze(-1).expand(-1, -1, x.size(-1))
143 y.scatter_(1, order, x)
146 return x.gather(1, order)
149 # ar_mask is a Boolean matrix of same shape as input, with 1s on the
150 # tokens that should be generated
153 def masked_inplace_autoregression(model, batch_size, input, ar_mask, order=None):
154 for input, ar_mask in zip(input.split(batch_size), ar_mask.split(batch_size)):
155 i = (ar_mask.sum(0) > 0).nonzero()
157 # Needed to initialize the model's cache
158 model(mygpt.BracketedSequence(input, 0, i.min()), order=order)
159 for s in range(i.min(), i.max() + 1):
160 output = model(mygpt.BracketedSequence(input, s, 1), order=order).x
161 logits = output[:, s]
162 if args.deterministic_synthesis:
163 t_next = logits.argmax(1)
165 dist = torch.distributions.categorical.Categorical(logits=logits)
166 t_next = dist.sample()
167 input[:, s] = ar_mask[:, s] * t_next + (1 - ar_mask[:, s]) * input[:, s]
170 ######################################################################
173 def compute_perplexity(model, split="train"):
174 with torch.autograd.no_grad():
178 nb_samples, acc_loss = 0, 0.0
180 for input in task.batches(split=split):
181 input = input.to(device)
182 order = random_order(input, task.height * task.width)
183 input = shuffle(input, order)
184 output = model(mygpt.BracketedSequence(input), order=order).x
185 loss = F.cross_entropy(output.transpose(1, 2), input)
186 acc_loss += loss.item() * input.size(0)
187 nb_samples += input.size(0)
191 return math.exp(min(100, acc_loss / nb_samples))
194 ######################################################################
197 def oneshot_policy_loss(mazes, output, policies, height, width):
198 masks = (mazes == maze.v_empty).unsqueeze(-1)
199 targets = policies.permute(0, 2, 1) * masks
200 output = output * masks
201 return -(output.log_softmax(-1) * targets).sum() / masks.sum()
204 def oneshot_trace_loss(mazes, output, policies, height, width):
205 masks = mazes == maze.v_empty
206 targets = maze.stationary_densities(
207 mazes.view(-1, height, width), policies.view(-1, 4, height, width)
209 targets = targets * masks
210 output = output.squeeze(-1) * masks
211 return (output - targets).abs().sum() / masks.sum()
214 def oneshot(gpt, task):
218 if args.oneshot_input == "head":
219 dim_in = args.dim_model
220 elif args.oneshot_input == "deep":
221 dim_in = args.dim_model * args.nb_blocks * 2
223 raise ValueError(f"{args.oneshot_input=}")
225 if args.oneshot_output == "policy":
227 compute_loss = oneshot_policy_loss
228 elif args.oneshot_output == "trace":
230 compute_loss = oneshot_trace_loss
232 raise ValueError(f"{args.oneshot_output=}")
234 model = nn.Sequential(
235 nn.Linear(dim_in, args.dim_model),
237 nn.Linear(args.dim_model, args.dim_model),
239 nn.Linear(args.dim_model, dim_out),
242 for n_epoch in range(args.nb_epochs):
243 learning_rate = learning_rate_schedule[n_epoch]
244 optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
246 acc_train_loss, nb_train_samples = 0, 0
247 for mazes, policies in task.policy_batches(split="train"):
248 order = random_order(input, task.height * task.width)
249 x = shuffle(mazes, order)
250 x = gpt(mygpt.BracketedSequence(x), mode=args.oneshot_input, order=order).x
251 output_gpt = shuffle(x, order, reorder=True)
252 output = model(output_gpt)
254 loss = compute_loss(mazes, output, policies, task.height, task.width)
255 acc_train_loss += loss.item() * mazes.size(0)
256 nb_train_samples += mazes.size(0)
258 optimizer.zero_grad()
262 acc_test_loss, nb_test_samples = 0, 0
263 for mazes, policies in task.policy_batches(split="test"):
264 order = random_order(input, task.height * task.width)
265 x = shuffle(mazes, order)
266 x = gpt(mygpt.BracketedSequence(x), mode=args.oneshot_input, order=order).x
267 output_gpt = shuffle(x, order, reorder=True)
268 output = model(output_gpt)
269 loss = compute_loss(mazes, output, policies, task.height, task.width)
270 acc_test_loss += loss.item() * mazes.size(0)
271 nb_test_samples += mazes.size(0)
274 f"diff_ce {n_epoch} train {acc_train_loss/nb_train_samples} test {acc_test_loss/nb_test_samples}"
277 # -------------------
278 mazes = task.test_input[:32, : task.height * task.width]
279 policies = task.test_policies[:32]
280 order = random_order(input, task.height * task.width)
281 x = shuffle(mazes, order)
282 x = gpt(mygpt.BracketedSequence(x), mode=args.oneshot_input, order=order).x
283 output_gpt = shuffle(x, order, reorder=True)
284 output = model(output_gpt)
285 if args.oneshot_output == "policy":
286 targets = policies.permute(0, 2, 1)
288 (F.one_hot(output.argmax(-1), num_classes=4) * targets).sum(-1) == 0
290 elif args.oneshot_output == "trace":
291 targets = maze.stationary_densities(
292 mazes.view(-1, task.height, task.width),
293 policies.view(-1, 4, task.height, task.width),
297 raise ValueError(f"{args.oneshot_output=}")
299 scores = scores.reshape(-1, task.height, task.width)
300 mazes = mazes.reshape(-1, task.height, task.width)
301 targets = targets.reshape(-1, task.height, task.width)
305 f"oneshot_{args.oneshot_input}_{args.oneshot_output}_{n_epoch:04d}.png",
311 # -------------------
316 ######################################################################
320 def batches(self, split="train", nb_to_use=-1, desc=None):
323 def vocabulary_size(self):
326 def produce_results(self, n_epoch, model):
330 ######################################################################
335 class TaskMaze(Task):
336 def map2seq(self, *m):
337 return torch.cat([x.flatten(1) for x in m], 1)
339 def seq2map(self, s):
340 s = s.reshape(s.size(0), -1, self.height, self.width)
341 return (s[:, k] for k in range(s.size(1)))
351 device=torch.device("cpu"),
353 self.batch_size = batch_size
358 train_mazes, train_paths, train_policies = maze.create_maze_data(
363 progress_bar=lambda x: tqdm.tqdm(x, dynamic_ncols=True, desc=f"data-train"),
365 self.train_input = self.map2seq(train_mazes.to(device), train_paths.to(device))
366 self.train_policies = train_policies.flatten(-2).to(device)
368 test_mazes, test_paths, test_policies = maze.create_maze_data(
373 progress_bar=lambda x: tqdm.tqdm(x, dynamic_ncols=True, desc=f"data-test"),
375 self.test_input = self.map2seq(test_mazes.to(device), test_paths.to(device))
376 self.test_policies = test_policies.flatten(-2).to(device)
378 self.nb_codes = self.train_input.max() + 1
380 def batches(self, split="train", nb_to_use=-1, desc=None):
381 assert split in {"train", "test"}
382 input = self.train_input if split == "train" else self.test_input
384 input = input[:nb_to_use]
386 desc = f"epoch-{split}"
387 for batch in tqdm.tqdm(
388 input.split(self.batch_size), dynamic_ncols=True, desc=desc
392 def policy_batches(self, split="train", nb_to_use=-1, desc=None):
393 assert split in {"train", "test"}
394 input = self.train_input if split == "train" else self.test_input
395 policies = self.train_policies if split == "train" else self.test_policies
396 input = input[:, : self.height * self.width]
397 policies = policies * (input != maze.v_wall)[:, None]
400 input = input[:nb_to_use]
401 policies = policies[:nb_to_use]
404 desc = f"epoch-{split}"
405 for batch in tqdm.tqdm(
406 zip(input.split(self.batch_size), policies.split(self.batch_size)),
412 def vocabulary_size(self):
415 def compute_error(self, model, split="train", nb_to_use=-1):
416 nb_total, nb_correct = 0, 0
417 for input in task.batches(split, nb_to_use):
418 result = input.clone()
419 ar_mask = result.new_zeros(result.size())
420 ar_mask[:, self.height * self.width :] = 1
421 result *= 1 - ar_mask
422 order = random_order(result, self.height * self.width)
423 masked_inplace_autoregression(
424 model, self.batch_size, result, ar_mask, order=order
426 result = shuffle(result, order, reorder=True)
427 mazes, paths = self.seq2map(result)
428 nb_correct += maze.path_correctness(mazes, paths).long().sum()
429 nb_total += mazes.size(0)
431 return nb_total, nb_correct
433 def produce_results(self, n_epoch, model):
434 with torch.autograd.no_grad():
438 train_nb_total, train_nb_correct = self.compute_error(
439 model, "train", nb_to_use=1000
442 f"accuracy_train nb_total {train_nb_total} nb_correct {train_nb_correct} accuracy {(100.0*train_nb_correct)/train_nb_total:.02f}%"
445 test_nb_total, test_nb_correct = self.compute_error(
446 model, "test", nb_to_use=1000
449 f"accuracy_test nb_total {test_nb_total} nb_correct {test_nb_correct} accuracy {(100.0*test_nb_correct)/test_nb_total:.02f}%"
452 input = self.test_input[:32]
453 result = input.clone()
454 ar_mask = result.new_zeros(result.size())
455 ar_mask[:, self.height * self.width :] = 1
456 result *= 1 - ar_mask
457 masked_inplace_autoregression(model, self.batch_size, result, ar_mask)
459 mazes, paths = self.seq2map(input)
460 _, predicted_paths = self.seq2map(result)
462 os.path.join(args.result_dir, f"result_{n_epoch:04d}.png"),
465 predicted_paths=predicted_paths,
466 path_correct=maze.path_correctness(mazes, predicted_paths),
472 ######################################################################
474 log_string(f"device {device}")
478 nb_train_samples=args.nb_train_samples,
479 nb_test_samples=args.nb_test_samples,
480 batch_size=args.batch_size,
481 height=args.maze_height,
482 width=args.maze_width,
483 nb_walls=args.maze_nb_walls,
488 vocabulary_size = task.vocabulary_size()
490 log_string(f"vocabulary_size {vocabulary_size}")
492 ##############################
495 vocabulary_size=vocabulary_size,
496 dim_model=args.dim_model,
497 dim_keys=args.dim_keys,
498 dim_hidden=args.dim_hidden,
499 nb_heads=args.nb_heads,
500 nb_blocks=args.nb_blocks,
502 dropout=args.dropout,
507 nb_parameters = sum(p.numel() for p in model.parameters())
508 log_string(f"nb_parameters {nb_parameters} ({int(nb_parameters/1e6)}M)")
510 ######################################################################
512 nb_epochs_finished = 0
514 if args.no_checkpoint:
515 log_string(f"not trying to load checkpoint.")
519 checkpoint_name = os.path.join(args.result_dir, args.checkpoint_name)
520 checkpoint = torch.load(checkpoint_name)
521 nb_epochs_finished = checkpoint["nb_epochs_finished"]
522 model.load_state_dict(checkpoint["model_state"])
523 torch.set_rng_state(checkpoint["rng_state"])
524 if torch.cuda.is_available():
525 torch.cuda.set_rng_state(checkpoint["cuda_rng_state"])
527 log_string(f"checkpoint loaded with {nb_epochs_finished} epochs finished.")
529 except FileNotFoundError:
530 log_string("starting from scratch.")
533 log_string("error when loading the checkpoint.")
536 ######################################################################
539 for input in task.batches(split="train"):
540 token_count += F.one_hot(input, num_classes=task.vocabulary_size()).sum((0, 1))
541 token_probas = token_count / token_count.sum()
542 entropy = -torch.xlogy(token_probas, token_probas).sum()
543 train_set_perplexity = math.exp(entropy)
545 ##############################
547 if args.learning_rate_schedule == "cos":
548 learning_rate_schedule = {}
549 for n_epoch in range(args.nb_epochs):
550 u = n_epoch / args.nb_epochs * math.pi
551 learning_rate_schedule[n_epoch] = args.learning_rate * 0.5 * (1 + math.cos(u))
556 tuple(x.split(":")) for x in args.learning_rate_schedule.split(",")
560 learning_rate_schedule = {}
561 learning_rate = args.learning_rate
562 for n_epoch in range(args.nb_epochs):
564 learning_rate = u[n_epoch]
565 learning_rate_schedule[n_epoch] = learning_rate
567 log_string(f"learning_rate_schedule {learning_rate_schedule}")
569 ##############################
571 if nb_epochs_finished >= args.nb_epochs:
572 n_epoch = nb_epochs_finished
573 train_perplexity = compute_perplexity(model, split="train")
574 test_perplexity = compute_perplexity(model, split="test")
577 f"perplexity {n_epoch} train_set {train_set_perplexity} train_prediction {train_perplexity} test_prediction {test_perplexity}"
580 task.produce_results(n_epoch, model)
584 ##############################
586 for n_epoch in range(nb_epochs_finished, args.nb_epochs):
587 learning_rate = learning_rate_schedule[n_epoch]
589 log_string(f"learning_rate {learning_rate}")
591 if args.optim == "sgd":
592 optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
593 elif args.optim == "adam":
594 optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
595 elif args.optim == "adamw":
596 optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate)
598 raise ValueError(f"{args.optim=}")
602 nb_train_samples, acc_train_loss = 0, 0.0
604 for input in task.batches(split="train"):
605 input = input.to(device)
606 order = random_order(input, task.height * task.width)
607 input = shuffle(input, order)
608 output = model(mygpt.BracketedSequence(input), order=order).x
609 loss = F.cross_entropy(output.transpose(1, 2), input)
610 acc_train_loss += loss.item() * input.size(0)
611 nb_train_samples += input.size(0)
613 optimizer.zero_grad()
617 train_perplexity = math.exp(min(100, acc_train_loss / nb_train_samples))
618 test_perplexity = compute_perplexity(model, split="test")
621 f"perplexity {n_epoch} train_set {train_set_perplexity} train_prediction {train_perplexity} test_prediction {test_perplexity}"
624 task.produce_results(n_epoch, model)
627 "nb_epochs_finished": n_epoch + 1,
628 "model_state": model.state_dict(),
629 "rng_state": torch.get_rng_state(),
632 if torch.cuda.is_available():
633 checkpoint["cuda_rng_state"] = torch.cuda.get_rng_state()
635 checkpoint_name = os.path.join(args.result_dir, args.checkpoint_name)
636 torch.save(checkpoint, checkpoint_name)
637 log_string(f"saved checkpoint {checkpoint_name}")
639 ######################################################################
644 ######################################################################