6a6343d4fc3e303f3352bfaaf7a29a5eabf020fc
[beaver.git] / beaver.py
1 #!/usr/bin/env python
2
3 # Any copyright is dedicated to the Public Domain.
4 # https://creativecommons.org/publicdomain/zero/1.0/
5
6 # Written by Francois Fleuret <francois@fleuret.org>
7
8 # torch.backends.cuda.matmul.allow_tf23
9 # torch.autocast(torch.bfloat16)
10
11 import math, sys, argparse, time, tqdm, itertools, os
12
13 import torch, torchvision
14 from torch import nn
15 from torch.nn import functional as F
16
17 import mygpt, tensorstack
18
19 ######################################################################
20
21 if torch.cuda.is_available():
22     device = torch.device("cuda")
23     torch.backends.cuda.matmul.allow_tf32 = True
24 else:
25     device = torch.device("cpu")
26
27 ######################################################################
28
29 parser = argparse.ArgumentParser(description="A maze shortest path solving with a GPT.")
30
31 parser.add_argument("--log_filename", type=str, default="train.log")
32
33 parser.add_argument("--result_dir", type=str, default="results_default")
34
35 parser.add_argument("--seed", type=int, default=0)
36
37 parser.add_argument("--nb_epochs", type=int, default=25)
38
39 parser.add_argument("--nb_train_samples", type=int, default=200000)
40
41 parser.add_argument("--nb_test_samples", type=int, default=50000)
42
43 parser.add_argument("--batch_size", type=int, default=25)
44
45 parser.add_argument("--optim", type=str, default="adam")
46
47 parser.add_argument("--learning_rate", type=float, default=1e-3)
48
49 parser.add_argument(
50     "--learning_rate_schedule", type=str, default="10: 2e-4,20: 4e-5,30: 8e-6"
51 )
52
53 parser.add_argument("--dim_model", type=int, default=512)
54
55 parser.add_argument("--dim_keys", type=int, default=64)
56
57 parser.add_argument("--dim_hidden", type=int, default=2048)
58
59 parser.add_argument("--nb_heads", type=int, default=8)
60
61 parser.add_argument("--nb_blocks", type=int, default=12)
62
63 parser.add_argument("--dropout", type=float, default=0.1)
64
65 parser.add_argument("--deterministic_synthesis", action="store_true", default=False)
66
67 parser.add_argument("--random_regression_order", action="store_true", default=False)
68
69 parser.add_argument("--no_checkpoint", action="store_true", default=False)
70
71 parser.add_argument("--overwrite_results", action="store_true", default=False)
72
73 parser.add_argument("--checkpoint_name", type=str, default="checkpoint.pth")
74
75 ##############################
76 # maze options
77
78 parser.add_argument("--maze_height", type=int, default=13)
79
80 parser.add_argument("--maze_width", type=int, default=21)
81
82 parser.add_argument("--maze_nb_walls", type=int, default=15)
83
84 ##############################
85 # one-shot prediction
86
87 parser.add_argument("--oneshot", action="store_true", default=False)
88
89 parser.add_argument("--oneshot_input", type=str, default="head")
90
91 parser.add_argument("--oneshot_output", type=str, default="trace")
92
93 ######################################################################
94
95 args = parser.parse_args()
96
97 try:
98     os.mkdir(args.result_dir)
99 except FileExistsError:
100     if not args.overwrite_results:
101         print(f"result directory {args.result_dir} already exists")
102         exit(1)
103
104 log_file = open(os.path.join(args.result_dir, args.log_filename), "a")
105
106 if args.seed >= 0:
107     # torch.backends.cudnn.deterministic = True
108     # torch.backends.cudnn.benchmark = False
109     # torch.use_deterministic_algorithms(True)
110     torch.manual_seed(args.seed)
111     if torch.cuda.is_available():
112         torch.cuda.manual_seed_all(args.seed)
113
114 ######################################################################
115
116
117 def log_string(s):
118     t = time.strftime("%Y%m%d-%H:%M:%S ", time.localtime())
119
120     if log_file is not None:
121         log_file.write(t + s + "\n")
122         log_file.flush()
123
124     print(t + s)
125     sys.stdout.flush()
126
127
128 for n in vars(args):
129     log_string(f"args.{n} {getattr(args, n)}")
130
131 ######################################################################
132
133
134 def generation_order(x, fixed_len=0):
135     if args.random_regression_order:
136         order = torch.rand(x.size(), device=x.device)
137         order[:, :fixed_len] = torch.arange(-fixed_len, 0, device=x.device)
138         order = order.sort(1).indices
139     else:
140         order = (
141             torch.arange(x.size(1), device=x.device).unsqueeze(0).expand(x.size(0), -1)
142         )
143     return order
144
145
146 def reorder(x, order, reverse=False):  # x is NxTxD1x...xDk, order is NxT'
147     u = x.reshape(x.size()[:2] + (-1,))
148     order = order.unsqueeze(-1).expand(-1, -1, u.size(-1))
149     if reverse:
150         v = u.new(u.size()).scatter_(1, order, u)
151     else:
152         v = u.gather(1, order)
153     v = v.reshape(v.size()[:2] + x.size()[2:])
154     return v
155
156
157 def shuffle(x, fixed_len):
158     order = generation_order(x, fixed_len)
159     return reorder(x, order), order
160
161
162 def eval_mygpt(model, input, mode="standard", fixed_len=0):
163     x, order = shuffle(input, fixed_len)
164     x = model(mygpt.BracketedSequence(x), mode=mode, order=order).x
165     return reorder(x, order, reverse=True)
166
167
168 ######################################################################
169
170 # ar_mask is a Boolean matrix of same shape as input, with 1s on the
171 # tokens that should be generated
172
173
174 def masked_inplace_autoregression(model, batch_size, input, ar_mask, order=None):
175     for input, ar_mask, order in zip(
176         input.split(batch_size), ar_mask.split(batch_size), order.split(batch_size)
177     ):
178         i = (ar_mask.sum(0) > 0).nonzero()
179         if i.min() > 0:
180             # Needed to initialize the model's cache
181             model(mygpt.BracketedSequence(input, 0, i.min()), order=order)
182         for s in range(i.min(), i.max() + 1):
183             output = model(mygpt.BracketedSequence(input, s, 1), order=order).x
184             logits = output[:, s]
185             if args.deterministic_synthesis:
186                 t_next = logits.argmax(1)
187             else:
188                 dist = torch.distributions.categorical.Categorical(logits=logits)
189                 t_next = dist.sample()
190             input[:, s] = ar_mask[:, s] * t_next + (1 - ar_mask[:, s]) * input[:, s]
191
192
193 ######################################################################
194
195
196 def compute_perplexity(model, task, fixed_len, split="train"):
197     with torch.autograd.no_grad():
198         t = model.training
199         model.eval()
200
201         nb_samples, acc_loss = 0, 0.0
202
203         for input in task.batches(split=split):
204             input = input.to(device)
205             output = eval_mygpt(model, input, fixed_len=fixed_len)
206             loss = F.cross_entropy(output.transpose(1, 2), input)
207             acc_loss += loss.item() * input.size(0)
208             nb_samples += input.size(0)
209
210         model.train(t)
211
212         return math.exp(min(100, acc_loss / nb_samples))
213
214
215 ######################################################################
216
217
218 def oneshot_policy_loss(mazes, output, policies, height, width):
219     masks = (mazes == maze.v_empty).unsqueeze(-1)
220     targets = policies.permute(0, 2, 1) * masks
221     output = output * masks
222     return -(output.log_softmax(-1) * targets).sum() / masks.sum()
223
224
225 def oneshot_trace_loss(mazes, output, policies, height, width):
226     masks = mazes == maze.v_empty
227     targets = maze.stationary_densities(
228         mazes.view(-1, height, width), policies.view(-1, 4, height, width)
229     ).flatten(-2)
230     targets = targets * masks
231     output = output.squeeze(-1) * masks
232     return (output - targets).abs().sum() / masks.sum()
233
234
235 def oneshot(gpt, task):
236     t = gpt.training
237     gpt.eval()
238
239     if args.oneshot_input == "head":
240         dim_in = args.dim_model
241     elif args.oneshot_input == "deep":
242         dim_in = args.dim_model * args.nb_blocks * 2
243     else:
244         raise ValueError(f"{args.oneshot_input=}")
245
246     if args.oneshot_output == "policy":
247         dim_out = 4
248         compute_loss = oneshot_policy_loss
249     elif args.oneshot_output == "trace":
250         dim_out = 1
251         compute_loss = oneshot_trace_loss
252     else:
253         raise ValueError(f"{args.oneshot_output=}")
254
255     model = nn.Sequential(
256         nn.Linear(dim_in, args.dim_model),
257         nn.ReLU(),
258         nn.Linear(args.dim_model, args.dim_model),
259         nn.ReLU(),
260         nn.Linear(args.dim_model, dim_out),
261     ).to(device)
262
263     for n_epoch in range(args.nb_epochs):
264         learning_rate = learning_rate_schedule[n_epoch]
265         optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
266
267         acc_train_loss, nb_train_samples = 0, 0
268         for mazes, policies in task.policy_batches(split="train"):
269             output_gpt = eval_mygpt(
270                 gpt, mazes, mode=args.oneshot_input, fixed_len=task.height * task.width
271             )
272             output = model(output_gpt)
273
274             loss = compute_loss(mazes, output, policies, task.height, task.width)
275             acc_train_loss += loss.item() * mazes.size(0)
276             nb_train_samples += mazes.size(0)
277
278             optimizer.zero_grad()
279             loss.backward()
280             optimizer.step()
281
282         acc_test_loss, nb_test_samples = 0, 0
283         for mazes, policies in task.policy_batches(split="test"):
284             output_gpt = eval_mygpt(
285                 gpt, mazes, mode=args.oneshot_input, fixed_len=task.height * task.width
286             )
287             output = model(output_gpt)
288             loss = compute_loss(mazes, output, policies, task.height, task.width)
289             acc_test_loss += loss.item() * mazes.size(0)
290             nb_test_samples += mazes.size(0)
291
292         log_string(
293             f"diff_ce {n_epoch} train {acc_train_loss/nb_train_samples} test {acc_test_loss/nb_test_samples}"
294         )
295
296         # -------------------
297         mazes = task.test_input[:32, : task.height * task.width]
298         policies = task.test_policies[:32]
299         output_gpt = eval_mygpt(
300             gpt, mazes, mode=args.oneshot_input, fixed_len=task.height * task.width
301         )
302         output = model(output_gpt)
303         if args.oneshot_output == "policy":
304             targets = policies.permute(0, 2, 1)
305             scores = (
306                 (F.one_hot(output.argmax(-1), num_classes=4) * targets).sum(-1) == 0
307             ).float()
308         elif args.oneshot_output == "trace":
309             targets = maze.stationary_densities(
310                 mazes.view(-1, task.height, task.width),
311                 policies.view(-1, 4, task.height, task.width),
312             ).flatten(-2)
313             scores = output
314         else:
315             raise ValueError(f"{args.oneshot_output=}")
316
317         scores = scores.reshape(-1, task.height, task.width)
318         mazes = mazes.reshape(-1, task.height, task.width)
319         targets = targets.reshape(-1, task.height, task.width)
320         filename = (
321             f"oneshot_{args.oneshot_input}_{args.oneshot_output}_{n_epoch:04d}.png"
322         )
323         maze.save_image(
324             os.path.join(args.result_dir, filename),
325             mazes=mazes,
326             score_paths=scores,
327             score_truth=targets,
328         )
329         log_string(f"wrote {filename}")
330
331         # -------------------
332
333     gpt.train(t)
334
335
336 ######################################################################
337
338
339 class Task:
340     def batches(self, split="train", nb_to_use=-1, desc=None):
341         pass
342
343     def vocabulary_size(self):
344         pass
345
346     def produce_results(self, n_epoch, model):
347         pass
348
349
350 ######################################################################
351
352 import maze
353
354
355 class TaskMaze(Task):
356     def map2seq(self, *m):
357         return torch.cat([x.flatten(1) for x in m], 1)
358
359     def seq2map(self, s):
360         s = s.reshape(s.size(0), -1, self.height, self.width)
361         return (s[:, k] for k in range(s.size(1)))
362
363     def __init__(
364         self,
365         nb_train_samples,
366         nb_test_samples,
367         batch_size,
368         height,
369         width,
370         nb_walls,
371         device=torch.device("cpu"),
372     ):
373         self.batch_size = batch_size
374         self.height = height
375         self.width = width
376         self.device = device
377
378         train_mazes, train_paths, train_policies = maze.create_maze_data(
379             nb_train_samples,
380             height=height,
381             width=width,
382             nb_walls=nb_walls,
383             progress_bar=lambda x: tqdm.tqdm(x, dynamic_ncols=True, desc=f"data-train"),
384         )
385         self.train_input = self.map2seq(train_mazes.to(device), train_paths.to(device))
386         self.train_policies = train_policies.flatten(-2).to(device)
387
388         test_mazes, test_paths, test_policies = maze.create_maze_data(
389             nb_test_samples,
390             height=height,
391             width=width,
392             nb_walls=nb_walls,
393             progress_bar=lambda x: tqdm.tqdm(x, dynamic_ncols=True, desc=f"data-test"),
394         )
395         self.test_input = self.map2seq(test_mazes.to(device), test_paths.to(device))
396         self.test_policies = test_policies.flatten(-2).to(device)
397
398         self.nb_codes = self.train_input.max() + 1
399
400     def batches(self, split="train", nb_to_use=-1, desc=None):
401         assert split in {"train", "test"}
402         input = self.train_input if split == "train" else self.test_input
403         if nb_to_use > 0:
404             input = input[:nb_to_use]
405         if desc is None:
406             desc = f"epoch-{split}"
407         for batch in tqdm.tqdm(
408             input.split(self.batch_size), dynamic_ncols=True, desc=desc
409         ):
410             yield batch
411
412     def policy_batches(self, split="train", nb_to_use=-1, desc=None):
413         assert split in {"train", "test"}
414         input = self.train_input if split == "train" else self.test_input
415         policies = self.train_policies if split == "train" else self.test_policies
416         input = input[:, : self.height * self.width]
417         policies = policies * (input != maze.v_wall)[:, None]
418
419         if nb_to_use > 0:
420             input = input[:nb_to_use]
421             policies = policies[:nb_to_use]
422
423         if desc is None:
424             desc = f"epoch-{split}"
425         for batch in tqdm.tqdm(
426             zip(input.split(self.batch_size), policies.split(self.batch_size)),
427             dynamic_ncols=True,
428             desc=desc,
429         ):
430             yield batch
431
432     def vocabulary_size(self):
433         return self.nb_codes
434
435     def compute_error(self, model, split="train", nb_to_use=-1):
436         nb_total, nb_correct = 0, 0
437         for input in task.batches(split, nb_to_use):
438             result = input.clone()
439             ar_mask = result.new_zeros(result.size())
440             ar_mask[:, self.height * self.width :] = 1
441             result *= 1 - ar_mask
442             x, order = shuffle(result, self.height * self.width)
443             masked_inplace_autoregression(
444                 model, self.batch_size, x, ar_mask, order=order
445             )
446             result = reorder(x, order, reverse=True)
447             mazes, paths = self.seq2map(result)
448             nb_correct += maze.path_correctness(mazes, paths).long().sum()
449             nb_total += mazes.size(0)
450
451         return nb_total, nb_correct
452
453     def produce_results(self, n_epoch, model):
454         with torch.autograd.no_grad():
455             t = model.training
456             model.eval()
457
458             train_nb_total, train_nb_correct = self.compute_error(
459                 model, "train", nb_to_use=1000
460             )
461             log_string(
462                 f"accuracy_train nb_total {train_nb_total} nb_correct {train_nb_correct} accuracy {(100.0*train_nb_correct)/train_nb_total:.02f}%"
463             )
464
465             test_nb_total, test_nb_correct = self.compute_error(
466                 model, "test", nb_to_use=1000
467             )
468             log_string(
469                 f"accuracy_test nb_total {test_nb_total} nb_correct {test_nb_correct} accuracy {(100.0*test_nb_correct)/test_nb_total:.02f}%"
470             )
471
472             input = self.test_input[:32]
473             result = input.clone()
474             ar_mask = result.new_zeros(result.size())
475             ar_mask[:, self.height * self.width :] = 1
476             result *= 1 - ar_mask
477             x, order = shuffle(result, self.height * self.width)
478             masked_inplace_autoregression(
479                 model, self.batch_size, x, ar_mask, order=order
480             )
481             result = reorder(x, order, reverse=True)
482
483             mazes, paths = self.seq2map(input)
484             _, predicted_paths = self.seq2map(result)
485             filename = f"result_{n_epoch:04d}.png"
486             maze.save_image(
487                 os.path.join(args.result_dir, filename),
488                 mazes=mazes,
489                 target_paths=paths,
490                 predicted_paths=predicted_paths,
491                 path_correct=maze.path_correctness(mazes, predicted_paths),
492             )
493             log_string(f"wrote {filename}")
494
495             model.train(t)
496
497
498 ######################################################################
499
500 log_string(f"device {device}")
501
502
503 task = TaskMaze(
504     nb_train_samples=args.nb_train_samples,
505     nb_test_samples=args.nb_test_samples,
506     batch_size=args.batch_size,
507     height=args.maze_height,
508     width=args.maze_width,
509     nb_walls=args.maze_nb_walls,
510     device=device,
511 )
512
513
514 vocabulary_size = task.vocabulary_size()
515
516 log_string(f"vocabulary_size {vocabulary_size}")
517
518 ##############################
519
520 model = mygpt.MyGPT(
521     vocabulary_size=vocabulary_size,
522     dim_model=args.dim_model,
523     dim_keys=args.dim_keys,
524     dim_hidden=args.dim_hidden,
525     nb_heads=args.nb_heads,
526     nb_blocks=args.nb_blocks,
527     causal=True,
528     dropout=args.dropout,
529 )
530
531 model.to(device)
532
533 nb_parameters = sum(p.numel() for p in model.parameters())
534 log_string(f"nb_parameters {nb_parameters} ({int(nb_parameters/1e6)}M)")
535
536 ######################################################################
537
538 nb_epochs_finished = 0
539
540 if args.no_checkpoint:
541     log_string(f"not trying to load checkpoint.")
542
543 else:
544     try:
545         checkpoint_name = os.path.join(args.result_dir, args.checkpoint_name)
546         checkpoint = torch.load(checkpoint_name)
547         nb_epochs_finished = checkpoint["nb_epochs_finished"]
548         model.load_state_dict(checkpoint["model_state"])
549         torch.set_rng_state(checkpoint["rng_state"])
550         if torch.cuda.is_available():
551             torch.cuda.set_rng_state(checkpoint["cuda_rng_state"])
552
553         log_string(f"checkpoint loaded with {nb_epochs_finished} epochs finished.")
554
555     except FileNotFoundError:
556         log_string("starting from scratch.")
557
558     except:
559         log_string("error when loading the checkpoint.")
560         exit(1)
561
562 ######################################################################
563
564 token_count = 0
565 for input in task.batches(split="train"):
566     token_count += F.one_hot(input, num_classes=task.vocabulary_size()).sum((0, 1))
567 token_probas = token_count / token_count.sum()
568 entropy = -torch.xlogy(token_probas, token_probas).sum()
569 train_set_perplexity = math.exp(entropy)
570
571 ##############################
572
573 if args.learning_rate_schedule == "cos":
574     learning_rate_schedule = {}
575     for n_epoch in range(args.nb_epochs):
576         u = n_epoch / args.nb_epochs * math.pi
577         learning_rate_schedule[n_epoch] = args.learning_rate * 0.5 * (1 + math.cos(u))
578 else:
579     u = {
580         int(k): float(v)
581         for k, v in [
582             tuple(x.split(":")) for x in args.learning_rate_schedule.split(",")
583         ]
584     }
585
586     learning_rate_schedule = {}
587     learning_rate = args.learning_rate
588     for n_epoch in range(args.nb_epochs):
589         if n_epoch in u:
590             learning_rate = u[n_epoch]
591         learning_rate_schedule[n_epoch] = learning_rate
592
593 log_string(f"learning_rate_schedule {learning_rate_schedule}")
594
595 ##############################
596
597 if nb_epochs_finished >= args.nb_epochs:
598     n_epoch = nb_epochs_finished
599     train_perplexity = compute_perplexity(
600         model, task, fixed_len=task.height * task.width, split="train"
601     )
602     test_perplexity = compute_perplexity(
603         model, task, fixed_len=task.height * task.width, split="test"
604     )
605
606     log_string(
607         f"perplexity {n_epoch} train_set {train_set_perplexity} train_prediction {train_perplexity} test_prediction {test_perplexity}"
608     )
609
610     task.produce_results(n_epoch, model)
611
612 ##############################
613
614 for n_epoch in range(nb_epochs_finished, args.nb_epochs):
615     learning_rate = learning_rate_schedule[n_epoch]
616
617     log_string(f"learning_rate {learning_rate}")
618
619     if args.optim == "sgd":
620         optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
621     elif args.optim == "adam":
622         optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
623     elif args.optim == "adamw":
624         optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate)
625     else:
626         raise ValueError(f"{args.optim=}")
627
628     model.train()
629
630     nb_train_samples, acc_train_loss = 0, 0.0
631
632     for input in task.batches(split="train"):
633         input = input.to(device)
634         output = eval_mygpt(
635             model, input, mode=args.oneshot_input, fixed_len=task.height * task.width
636         )
637         loss = F.cross_entropy(output.transpose(1, 2), input)
638         acc_train_loss += loss.item() * input.size(0)
639         nb_train_samples += input.size(0)
640
641         optimizer.zero_grad()
642         loss.backward()
643         optimizer.step()
644
645     train_perplexity = math.exp(min(100, acc_train_loss / nb_train_samples))
646     test_perplexity = compute_perplexity(
647         model, task, fixed_len=task.height * task.width, split="test"
648     )
649
650     log_string(
651         f"perplexity {n_epoch} train_set {train_set_perplexity} train_prediction {train_perplexity} test_prediction {test_perplexity}"
652     )
653
654     task.produce_results(n_epoch, model)
655
656     checkpoint = {
657         "nb_epochs_finished": n_epoch + 1,
658         "model_state": model.state_dict(),
659         "rng_state": torch.get_rng_state(),
660     }
661
662     if torch.cuda.is_available():
663         checkpoint["cuda_rng_state"] = torch.cuda.get_rng_state()
664
665     checkpoint_name = os.path.join(args.result_dir, args.checkpoint_name)
666     torch.save(checkpoint, checkpoint_name)
667     log_string(f"saved checkpoint {checkpoint_name}")
668
669 ######################################################################
670
671 if args.oneshot:
672     oneshot(model, task)
673
674 ######################################################################